
Chapter 3.5
Memory and I/O Systems

Memory Management

2

• Only applies to languages with explicit
memory management (C, C++)

• Memory problems are one of the
leading causes of bugs in programs

• Leaks

• Buffer Overflows (Improper Access)

• Fragmentation

Memory Management

3

We have 3 goals when working with memory:
1. Safety

– Find fix leaks
– Protect data

2. Knowledge
– Who, what, where, how much

3. Control
– Location → Caching → Speed

Memory Fragmentation

4

• Free physical memory is only available
in small sections

• Can prevent an allocation from
completing successfully even if there's
plenty of free memory

• Virtual addressing will greatly help with
fragmentation problems

Virtual Addressing

5

V i r t u a l
A d d r e s s T a b l e

B l o c k 2

B l o c k 4

B l o c k 3

B l o c k 5

B l o c k 1

P h y s i c a l M e m o r y

B l o c k 1

B l o c k 4

V i r t u a l
M e m o r y V i e w

• Virtual addressing
"Lying to your applications since 1961"

Static Allocation

6

Static memory allocation: If all memory is statically
allocated at start there will be very few problems:

• No - Leaks (no malloc, new, delete, free)

• No - Fragmentation

• No - Running out of memory

Has disadvantages though:

• Very restrictive (everything predeclared)

• Lots of wasted memory

• Old games used to be done this way

Static Allocation Example

// Create a fixed number of pathnodes

#define MAX_PATHNODES 4096

AIPathNode max_PathNodes[MAX_PATHNODES];

// Create a fixed size butter for Geometry calculations

// 8MB in size

#define GEOMSIZE (8*1024*1024)

byte* s_GeomBuffer[GEOMSIZE];

Dynamic Allocation

8

Dynamic allocation is much more flexible
than static allocations:

• But has lots of potential problems

• Leaks,

• Miss-allocations

• Tracking difficulties

• Need to override/replace new and
delete to take control over allocations

Key Concept #1
1. "new" is actually broken down by the compiler into
many sub-steps.

MyClass *data = new MyClass();

// Equivalent too
MyClass *data = malloc(sizeof(MyClass));
*data -> MyClass();

// malloc() in turn is broken down into several calls.

Key Concept #2
2. “new” and “delete” are just operators (like +, <, =)
and operators can be changed and overloaded.

CVector::CVector (int a, int b) { x = a; y = b; }

CVector CVector::operator+ (CVector param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return (temp);
}

Key Concept #3
3. We can overload new (and delete) so that they
create and manage receipts (allocation headers) for all
dynamically created objects.

void * operator new (size_t size, Heap *pHeap);

Struct AllocHeader {
int nSignature, nAllocnum, nSize;
Heap *pHeap;
AllocHeader * pNext;
AllocHeader * pPrev;

}

Key Concept #4
3. We can overload new (and delete) so that
return/release a pointer to an existing (statically
defined) memory location [using Alloc()], rather then
using malloc to create a new one.

Class MemoryPool {

…

Void * Alloc (size_t nSize)

Memory Manager
• Heaps are collections of data sorted by size.

• We can use a heap to monitor memory
allocations

• We will need to override operator new and
delete

• We can add some simple error-checking
schemes to prevent memory overrun
problems

13

Memory Management

Memory leaks

A memory leak is a memory allocation that
is no longer necessary and was not
released by the program

Memory leaks can cause the game to use
up resources and run out of memory

To find all memory leaks, we look for all the
allocations that occurred between two
particular points in time

14

Memory Management

Memory pools

Memory pools are contiguous blocks of
memory used to allocate objects

Allocations are extremely fast

There is no fragmentation

They will usually have some unused space

We can allocate objects from specific
classes with a simple macro

15

Memory Management
Memory pools

16E m p t y b l o c k
E m p t y b l o c k h e a d e r
B l o c k w i t h d a t a

a b c

File I/O

17

Sometimes full file I/O not available on all platforms

●Different ways of accessing different devices

●Different speeds of access

●Memory cards, network, etc

Usually have no control over physical disk allocation

●Which can lead to long load times

Ultimate goal is too simplify and speed-up File I/O

File I/O

Desire unified file system
● Platform independent
● Provide same interface to different types

of media
● Based around FileSystem class
● Allow us to “buffer data” as desired

● Including moving data to main memory

18

File I/O
File system class

● Uses concept of streams
● Stream can be the source of data

Possible sources
● File, memory, network
● Or it can be a layer that adds some

properties

Possible layers
● Buffering, compression, range, etc

19

File I/O
File system

20

B u f f e r i n g L a y e rF i l e S o u r c e

D a t a S t r e a m

Pack Files
Fast Processor & Slow File I/O

Perfect time to use compression

Cab, zip, rar or custom.

Pack files can yield caching advantages

Grouping related data

Improve cached hit if large sections buffered

Game Resources
A game resource (or asset) is anything

that gets loaded that could be shared
by several parts of the game

A texture, an animation, a sound, etc

We want to load and share resources
quickly and easily avoid File I/O

There will be many different types of
resources in a game

22

Game Resources

Resource manager

Uses registering object factory pattern

Can register different types of resources

All resource creation goes through the
resource manager

Any requests for existing resources don't
load it again

Pre-caching possible/desirable
23

Game Resources
Resource lifetime

If resources are shared, how do we know
when we can destroy them?

All at once

At the end of the level

Explicit lifetime management

Reference counting

Smart Pointers
24

Game Resources

Resources and instances

Resource is the part of the asset that can be
shared among all parts of the game

Instance is the unique data that each part
(object) of the game needs to keep

Pointers can be used to keep instance data
that references shared resource data

25

Serialization

Every game needs to save and restore
some game state

Even for check point saves

Level editing and creation could be
implemented as a saved game

How do we effectively store state
information for objects?

26

Serialization
Saving

ISerializable interface (pure virtual functions)
for Read and Write operations

Each class implements the Write() function

Saving pointers is a problem
They won't be the same when we load

Save raw pointers to other objects
Translate them later

Save UID information (always valid)
27

Serialization

Loading

Create object types through an object
factory

Read() function takes care of loading the
stored data from the stream

Pointers are then loaded into a translation
table

Second pass fixes up all the pointers
28

The end

29

	Chapter 3.5 Memory and I/O Systems
	Memory Management
	Slide 3
	Memory Fragmentation
	Virtual Addressing
	Static Allocation
	Slide 7
	Dynamic Allocation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Memory Manager
	Slide 14
	Slide 15
	Slide 16
	File I/O
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Game Resources
	Slide 23
	Slide 24
	Slide 25
	Serialization
	Slide 27
	Slide 28
	The end

