
Chapter 3.6

Debugging Games



2

The Five Step

Debugging Process

1. Reproduce the problem consistently

2. Collect clues

3. Pinpoint the error

4. Repair the problem

5. Test the solution



3

Step 1: Reproduce the 

Problem Consistently

Sample repro steps:

1. Start a single player game

2. Choose Skirmish on map 44

3. Find the enemy camp

4. From a distance, use projectile weapons 

to attack the enemies at the camp

5. Result: 90 percent of the time the game 

crashes



4

Step 2:

Collect Clues

 Each clue a chance to rule out a cause

 Projectile weapons, distance

 Each clue a chance to narrow down the 

list of suspects

 Collision detection system, vectors?

Realize that some clues can be 

misleading and should be ignored

 Skirmish mode...



5

Step 3:

Pinpoint the Error

Two main methods:

1. Propose a Hypothesis

You have an idea what is causing the bug

Design tests to prove or disprove your 

hypothesis

2. Divide and Conquer

Narrow down what could be causing the bug

 Eliminate possibilities from the top down or

 Backtrack from the point of failure upward

 Turn off parts, asserts, traces



6

Step 4:

Repair the Problem

 Propose solution

Consider implications at point in project

 Programmer who wrote the code should 
ideally fix the problem (or at least be 
consulted)

 Explore other ways the bug could occur

 Ensure underlying problem fixed and not 
just a symptom of the problem



7

Step 5:

Test the Solution

 Verify the bug was fixed

Check original repro steps

 Ideally have someone else 
independently verify the fix

Make sure no new bugs were introduced

 At the very end of the project, have other 
programmers review the fix



8

Expert Debugging Tips

 Question assumptions

 Minimize interactions and interference

 Minimize randomness

 Break complex calculations into steps

 Check boundary conditions

 Disrupt parallel computations

 Exploit tools in the debugger

 Check code that has recently changed

 Explain the bug to someone else

 Debug with a partner

 Take a break from the problem

 Get outside help



9

Tough Debugging Scenarios

 Bug exists in Release but not Debug
 Uninitialized data or optimization issue

 Bug exists on final hardware, not dev-kit
 Find out how they differ – usually memory size or disc emulation

 Bug disappears when changing something innocuous
 Timing or memory overwrite problem

 Intermittent problems
 Record as much info when it does happen

 Unexplainable behavior
 Retry, Rebuild, Reboot, Reinstall

 Internal compiler errors
 Full rebuild, divide and conquer, try other machines

 Suspect it’s not your code
 Check for patches, updates, or reported bugs

 Contact console maker, library maker, or compiler maker



10

Understanding the

Underlying System

 Knowing C or C++ not enough

 Know how the compiler implements code

 Know the details of your hardware

Especially important for console development

 Know how assembly works and be able to 

read it

Helps with optimization bugs or compiler 

issues



11

Adding Infrastructure

to Assist in Debugging

 Alter game variables during gameplay

 Visual AI diagnostics

 Logging capability

 Recording and playback capability

 Track memory allocation

 Print as much information as possible on a 
crash

 Educate your entire team

 testers, artists, designers, producers



12

Prevention of Bugs

 Set compiler to highest warning level

 Set compiler warnings to be errors

 Compiler on multiple compilers

 Write your own memory manager

 Use asserts to verify assumptions

 Initialize variables when they are declared

 Bracket loops and if statements

 Use cognitively different variable names

 Avoid identical code in multiple places

 Avoid magic (hardcoded) numbers

 Verify code coverage when testing


