
Chapter 3.6

Debugging Games



2

The Five Step

Debugging Process

1. Reproduce the problem consistently

2. Collect clues

3. Pinpoint the error

4. Repair the problem

5. Test the solution



3

Step 1: Reproduce the 

Problem Consistently

Sample repro steps:

1. Start a single player game

2. Choose Skirmish on map 44

3. Find the enemy camp

4. From a distance, use projectile weapons 

to attack the enemies at the camp

5. Result: 90 percent of the time the game 

crashes



4

Step 2:

Collect Clues

 Each clue a chance to rule out a cause

 Projectile weapons, distance

 Each clue a chance to narrow down the 

list of suspects

 Collision detection system, vectors?

Realize that some clues can be 

misleading and should be ignored

 Skirmish mode...



5

Step 3:

Pinpoint the Error

Two main methods:

1. Propose a Hypothesis

You have an idea what is causing the bug

Design tests to prove or disprove your 

hypothesis

2. Divide and Conquer

Narrow down what could be causing the bug

 Eliminate possibilities from the top down or

 Backtrack from the point of failure upward

 Turn off parts, asserts, traces



6

Step 4:

Repair the Problem

 Propose solution

Consider implications at point in project

 Programmer who wrote the code should 
ideally fix the problem (or at least be 
consulted)

 Explore other ways the bug could occur

 Ensure underlying problem fixed and not 
just a symptom of the problem



7

Step 5:

Test the Solution

 Verify the bug was fixed

Check original repro steps

 Ideally have someone else 
independently verify the fix

Make sure no new bugs were introduced

 At the very end of the project, have other 
programmers review the fix



8

Expert Debugging Tips

 Question assumptions

 Minimize interactions and interference

 Minimize randomness

 Break complex calculations into steps

 Check boundary conditions

 Disrupt parallel computations

 Exploit tools in the debugger

 Check code that has recently changed

 Explain the bug to someone else

 Debug with a partner

 Take a break from the problem

 Get outside help



9

Tough Debugging Scenarios

 Bug exists in Release but not Debug
 Uninitialized data or optimization issue

 Bug exists on final hardware, not dev-kit
 Find out how they differ – usually memory size or disc emulation

 Bug disappears when changing something innocuous
 Timing or memory overwrite problem

 Intermittent problems
 Record as much info when it does happen

 Unexplainable behavior
 Retry, Rebuild, Reboot, Reinstall

 Internal compiler errors
 Full rebuild, divide and conquer, try other machines

 Suspect it’s not your code
 Check for patches, updates, or reported bugs

 Contact console maker, library maker, or compiler maker



10

Understanding the

Underlying System

 Knowing C or C++ not enough

 Know how the compiler implements code

 Know the details of your hardware

Especially important for console development

 Know how assembly works and be able to 

read it

Helps with optimization bugs or compiler 

issues



11

Adding Infrastructure

to Assist in Debugging

 Alter game variables during gameplay

 Visual AI diagnostics

 Logging capability

 Recording and playback capability

 Track memory allocation

 Print as much information as possible on a 
crash

 Educate your entire team

 testers, artists, designers, producers



12

Prevention of Bugs

 Set compiler to highest warning level

 Set compiler warnings to be errors

 Compiler on multiple compilers

 Write your own memory manager

 Use asserts to verify assumptions

 Initialize variables when they are declared

 Bracket loops and if statements

 Use cognitively different variable names

 Avoid identical code in multiple places

 Avoid magic (hardcoded) numbers

 Verify code coverage when testing


