Chapter 3.6
Debugging Games

"”“” The Five Step
Debugging Process

1. Reproduce the problem consistently
2. Collect clues

3. Pinpoint the error

4. Repair the problem

5. Test the solution

Step 1: Reproduce the
Problem Consistently

Sample repro steps:
1. Start a single player game
2. Choose Skirmish on map 44
3. Find the enemy camp

4. From a distance, use projectile weapons
to attack the enemies at the camp

5. Result: 90 percent of the time the game
crashes

.||I\H| Step 2:
Collect Clues

Each clue a chance to rule out a cause
Projectile weapons, distance

Each clue a chance to narrow down the
list of suspects

Collision detection system, vectors?

Realize that some clues can be
misleading and should be ignored

Skirmish mode...

TESE
Pinpoint the Error

Two main methods:

1. Propose a Hypothesis
You have an idea what is causing the bug

Design tests to prove or disprove your
hypothesis

2. Divide and Conquer

Narrow down what could be causing the bug
Eliminate possibilities from the top down or
Backtrack from the point of failure upward
Turn off parts, asserts, traces

.||I\H| Step 4:
Repair the Problem

Propose solution
Consider implications at point in project

Programmer who wrote the code should
ideally fix the problem (or at least be
consulted)

Explore other ways the bug could occur

Ensure underlying problem fixed and not
just a symptom of the problem

e
Test the Solution

Verify the bug was fixed
Check original repro steps

|deally have someone else
Independently verify the fix

Make sure no new bugs were introduced

At the very end of the project, have other
programmers review the fix

Expert Debugging Tips

Question assumptions

Minimize interactions and interference
Minimize randomness

Break complex calculations into steps
Check boundary conditions

Disrupt parallel computations

Exploit tools in the debugger

Check code that has recently changed
Explain the bug to someone else
Debug with a partner

Take a break from the problem

Get outside help

Tough Debugging Scenarios

Bug exists in Release but not Debug
Uninitialized data or optimization issue
Bug exists on final hardware, not dev-kit
Find out how they differ — usually memory size or disc emulation
Bug disappears when changing something innocuous
Timing or memory overwrite problem

Intermittent problems
Record as much info when it does happen

Unexplainable behavior
Retry, Rebuild, Reboot, Reinstall

Internal compiler errors
Full rebuild, divide and conquer, try other machines

Suspect it's not your code
Check for patches, updates, or reported bugs
Contact console maker, library maker, or compiler maker

Understanding the
Underlying System

Knowing C or C++ not enough
Know how the compiler implements code
Know the detalls of your hardware
Especially important for console development

Know how assembly works and be able to
read it

Helps with optimization bugs or compiler
Issues

10

Adding Infrastructure
to Assist iIn Debugging

Alter game variables during gameplay
Visual Al diagnostics

Logging capability

Recording and playback capability
Track memory allocation

Print as much information as possible on a
crash

Educate your entire team
testers, artists, designers, producers

11

Prevention of Bugs

Set compiler to highest warning level
Set compiler warnings to be errors
Compiler on multiple compilers

Write your own memory manager

Use asserts to verify assumptions
Initialize variables when they are declared
Bracket loops and if statements

Use cognitively different variable names
Avoid identical code in multiple places
Avoid magic (hardcoded) numbers
Verify code coverage when testing

12

