Chapter 4.1
Mathematical Concepts

## Applied Trigonometry

## "이d Henry $\underline{\text { And }} \underline{\text { His Old Aunt" }}$ <br> - Defined using right triangle



$$
\begin{aligned}
& \sin \alpha=\frac{y}{h} \\
& \cos \alpha=\frac{x}{h} \\
& \tan \alpha=\frac{y}{x}=\frac{\sin \alpha}{\cos \alpha}
\end{aligned}
$$

## Applied Trigonometry

Angles measured in radians

$$
\begin{aligned}
& \text { radians }=\frac{\pi}{180}(\text { degrees }) \\
& \text { degrees }=\frac{180}{\pi}(\text { radians })
\end{aligned}
$$

## Full circle contains $2 \pi$ radians

## Applied Trigonometry

Sine and cosine used to decompose a point into horizontal and vertical components


## Applied Trigonometry

## Trigonometric identities

$$
\begin{array}{ll}
\sin (-\alpha)=-\sin \alpha & \cos \alpha=\sin (\alpha+\pi / 2) \\
\cos (-\alpha)=\cos \alpha & \sin \alpha=\cos (\alpha-\pi / 2) \\
\tan (-\alpha)=-\tan \alpha & \cos \alpha=-\sin (\alpha-\pi / 2) \\
\sin ^{2} \alpha+\cos ^{2} \alpha=1 & \sin \alpha=-\cos (\alpha+\pi / 2)
\end{array}
$$

$$
\begin{aligned}
& \sin \alpha=-\sin (\alpha+\pi)=-\sin (\alpha-\pi) \\
& \cos \alpha=-\cos (\alpha+\pi)=-\cos (\alpha-\pi)
\end{aligned}
$$

## Applied Trigonometry

Inverse trigonometric (arc) functions

- Return angle for which sin, cos, or tan function produces a particular value
- If $\sin \alpha=z$, then $\alpha=\sin ^{-1} z$
- If $\cos \alpha=z$, then $\alpha=\cos ^{-1} z$
- If $\tan \alpha=z$, then $\alpha=\tan ^{-1} z$


## Applied Trigonometry

Law of sines

$$
\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}
$$

Law of cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$



- Reduces to Pythagorean theorem when $\gamma=90$ degrees


## Trigonometric Identities




## Scalars \& Vectors

Scalars represent quantities that can be described fully using one value

- Mass
- Time
- Distance

Vectors describe a 'state' using multiple values (magnitude and direction together)

## Vectors

## Examples of vectors

- Difference between two points
- Magnitude is the distance between the points

Direction points from one point to the other

- Velocity of a projectile

Magnitude is the speed of the projectile
Direction is the direction in which it's traveling

- A force is applied along a direction


## Vectors (cont)

Vectors can be visualized by an arrow

- The length represents the magnitude
- The arrowhead indicates the direction
- Multiplying a vector by a scalar changes the arrow's length

2 V


## Vectors Mathematics

Two vectors $\mathbf{V}$ and $\mathbf{W}$ are added by placing the beginning of $\mathbf{W}$ at the end of $\mathbf{V}$
Subtraction reverses the second vector


## 3D Vectors

An $n$-dimensional vector $\mathbf{V}$ is represented by $n$ components
In three dimensions, the components are named $x, y$, and $z$
Individual components are expressed using the name as a subscript:

$$
\mathbf{V}=\langle 1,2,3\rangle \quad V_{x}=1 \quad V_{y}=2 \quad V_{z}=3
$$

## Vector Mathematics

## Vectors add and subtract componentwise

$$
\begin{aligned}
& \mathbf{V}+\mathbf{W}=\left\langle V_{1}+W_{1}, V_{2}+W_{2}, \ldots, V_{n}+W_{n}\right\rangle \\
& \mathbf{V}-\mathbf{W}=\left\langle V_{1}-W_{1}, V_{2}-W_{2}, \ldots, V_{n}-W_{n}\right\rangle
\end{aligned}
$$

## Magnitude of a Vector

The magnitude of an $n$-dimensional vector $\mathbf{V}$ is given by

$$
\|\mathbf{V}\|=\sqrt{\sum_{i=1}^{n} V_{i}^{2}}
$$

In three dimensions (Pythagoras 3D)

$$
\|\mathbf{V}\|=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}
$$

Distance from the origin.

## Normalized Vectors

A vector having a magnitude of 1 is called a unit vector
Any vector $\mathbf{V}$ can be resized to unit length by dividing it by its magnitude:

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{V}\|}
$$

This process is called normalization Piecewise division

## Matrices

A matrix is a rectangular array of numbers arranged as rows and columns

- A matrix having $n$ rows and $m$ columns is an $n \times m$ matrix
- At the right, $\mathbf{M}$ is a

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- If $n=m$, the matrix is a square matrix


## Matrices

The entry of a matrix $\mathbf{M}$ in the $\dot{\xi}$-th row and $j$ th column is denoted $M_{i j}$ For example,

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

$$
\begin{array}{ll}
M_{11}=1 & M_{21}=4 \\
M_{12}=2 & M_{22}=5 \\
M_{13}=3 & M_{23}=6
\end{array}
$$

## Matrices Transposition

The transpose of a matrix $\mathbf{M}$ is denoted $\mathbf{M}^{\top}$ and has its rows and columns exchanged:

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad \mathbf{M}^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

## Vectors and Matrices

An $n$-dimensional vector $\mathbf{V}$ can be thought of as an $n \times 1$ column matrix:

$$
\mathbf{V}=\left\langle V_{1}, V_{2}, \ldots, V_{n}\right\rangle=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{n}
\end{array}\right]
$$

Or a $1 \times n$ row matrix:

$$
\mathbf{V}^{\mathrm{T}}=\left[\begin{array}{llll}
V_{1} & V_{2} & \cdots & V_{n}
\end{array}\right]
$$

## Matrix Multiplication

## Product of two matrices $\mathbf{A}$ and $\mathbf{B}$

- Number of columns of $\mathbf{A}$ must equal number of rows of $\mathbf{B}$
= If $\mathbf{A}$ is a $n \times m$ matrix, and $\mathbf{B}$ is an $m \times p$ matrix, then $\mathbf{A B}$ is an $n \times p$ matrix
- Entries of the product are given by

$$
(\mathbf{A B})_{i j}=\sum_{k=1}^{m} A_{i k} B_{k j}
$$

## Example

Matrix


$$
\begin{aligned}
& x=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) *\left(\begin{array}{l}
9 \\
8 \\
7
\end{array}\right) \\
& 1 * 9+2 * 8+3 * 7=46 \\
& 4 * 9+5 * 8+6 * 7=118 \\
& x=\binom{46}{118}
\end{aligned}
$$

## More Examples

## Example matrix product

$$
\begin{aligned}
& \mathbf{M}=\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-2 & 1 \\
4 & -5
\end{array}\right]=\left[\begin{array}{cc}
8 & -13 \\
-6 & 6
\end{array}\right] \\
& M_{11}=2 \cdot(-2)+3 \cdot 4=8 \\
& M_{12}=2 \cdot 1+3 \cdot(-5)=-13 \\
& M_{21}=1 \cdot(-2)+(-1) \cdot 4=-6 \\
& M_{22}=1 \cdot 1+(-1) \cdot(-5)=6
\end{aligned}
$$

## Coordinate Systems (more later)

Matrices are used to transform vectors from one coordinate system to another In three dimensions, the product of a matrix and a column vector looks like:

$$
\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]\left[\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right]=\left[\begin{array}{l}
M_{11} V_{x}+M_{12} V_{y}+M_{13} V_{z} \\
M_{21} V_{x}+M_{22} V_{y}+M_{23} V_{z} \\
M_{31} V_{x}+M_{32} V_{y}+M_{33} V_{z}
\end{array}\right]
$$

## Identity Matrix

An $n \times n$ identity matrix is denoted $\mathbf{I}_{n}$ $\mathbf{I}_{n}$ has entries of 1 along the main diagonal and 0 everywhere else

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

## Identity Matrix

For any $n \times n$ matrix $\mathbf{M}_{n \prime}$ the product with the identity matrix is $\mathbf{M}_{n}$ itself

- $\mathbf{I}_{n} \mathbf{M}_{n}=\mathbf{M}_{n}$
- $\mathbf{M}_{n} \mathbf{I}_{n}=\mathbf{M}_{n}$

The identity matrix is the matrix analog of the number one.

## Inverse \& Invertible

An $n \times n$ matrix $\mathbf{M}$ is invertible if there exists another matrix $\mathbf{G}$ such that

$$
\mathbf{M G}=\mathbf{G M}=\mathbf{I}_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

The inverse of $\mathbf{M}$ is denoted $\mathbf{M}^{-1}$

## Determinant

## Not every matrix has an inverse!

A noninvertible matrix is called singular.
Whether a matrix is invertible or not can be determined by calculating a scalar quantity called the determinant.

## Determinant

The determinant of a square matrix $\mathbf{M}$ is denoted det $\mathbf{M}$ or $|\mathbf{M}|$ A matrix is invertible if its determinant is not zero
For a $2 \times 2$ matrix,


## 2D Determinant

Can also be thought as the are of a parallelogram



## 3D Determinant

 $\operatorname{det}(A)=a e i+b f g+c d h-a f h-b d i-c e g$.$$
\begin{array}{rlllll}
a b c a b \\
d & e f d e & b & c & d & e f d \\
g h i g h \\
g & h & i & g h
\end{array}
$$



## Calculating matrix inverses

If you have the determinant you can find the inverse of a matrix.
A decent tutorial can be found here:
http://easycalculation.com/matrix/invers e-matrix-tutorial.php
For the most part you will use a function to do the busy work for you.

## Officially "New" Stuff

## The Dot Product

The dot product is a product between two vectors that produces a scalar

- The dot product between two $n$-dimensional vectors $\mathbf{V}$ and $\mathbf{W}$ is given by

$$
\mathbf{V} \cdot \mathbf{W}=\sum_{i=1}^{n} V_{i} W_{i}
$$

- In three dimensions,

$$
\mathbf{V} \cdot \mathbf{W}=V_{x} W_{x}+V_{y} W_{y}+V_{z} W_{z}
$$

## The Dot Product

## The dot product satisfies the formula

$$
\mathbf{V} \cdot \mathbf{W}=\|\mathbf{V}\|\|\mathbf{W}\| \cos \alpha
$$

- $\alpha$ is the angle between the two vectors
- ||V|| magnitude.
- Dot product is always 0 between perpendicular vectors (Cos $90=0$ )
- If $\mathbf{V}$ and $\mathbf{W}$ are unit vectors, the dot product is 1 for parallel vectors pointing in the same direction, -1 for opposite


## Dot Product

## Solving the previous formula for $\Theta$

 yields

## The Dot Product

## The dot product can be used to project one vector onto another



## The Dot Product

The dot product of a vector with itself produces the squared magnitude

$$
\mathbf{v} \cdot \mathbf{V}=\|\mathbf{V}\| \mathbf{V}\|=\| \mathbf{V} \|^{2}
$$

Often, the notation $V^{2}$ is used as shorthand for V.V

## Dot Product Review

Takes two vectors and makes a scalar.

- Determine if two vectors are perpendicular
- Determine if two vectors are parallel
- Determine angle between two vectors
- Project one vector onto another
- Determine if vectors on same side of plane
- Determine if two vectors intersect (as well as the when and where).
- Easy way to get squared magnitude.


## Whew....

## The Cross Product

The cross product is a product between two vectors the produces a vector

- The cross product only applies in three dimensions
- The cross product of two vectors, is another vector, that has the property of being perpendicular to the vectors being multiplied together
- The cross product between two parallel vectors is the zero vector $(0,0,0)$


## The Cross Product

The cross product between $\mathbf{V}$ and $\mathbf{W}$ is

$$
\mathbf{V} \times \mathbf{W}=\left\langle V_{y} W_{z}-V_{z} W_{y}, V_{z} W_{x}-V_{x} W_{z}, V_{x} W_{y}-V_{y} W_{x}\right\rangle
$$

A helpful tool for remembering this formula is the pseudodeterminant

$$
\mathbf{V} \times \mathbf{W}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
V_{x} & V_{y} & V_{z} \\
W_{x} & W_{y} & W_{z}
\end{array}\right|
$$

## The Cross Product

The cross product can also be expressed as the matrix-vector product

$$
\mathbf{V} \times \mathbf{W}=\left[\begin{array}{ccc}
0 & -V_{z} & V_{y} \\
V_{z} & 0 & -V_{x} \\
-V_{y} & V_{x} & 0
\end{array}\right]\left[\begin{array}{l}
W_{x} \\
W_{y} \\
W_{z}
\end{array}\right]
$$

## The Cross Product

The cross product satisfies the trigonometric relationship

$$
\|\mathbf{V} \times \mathbf{W}\|=\|\mathbf{V}\|\|\mathbf{W}\| \sin \alpha
$$

This is the area of the parallelogram formed by $\mathbf{V}$ and $\mathbf{W}$
$\| \mathbf{V}| | \sin \alpha$

## The Cross Product

The area $A$ of a triangle with vertices $\mathbf{P}_{1}, \mathbf{P}_{2}$, and $\mathbf{P}_{3}$ is thus given by

$$
A=\frac{1}{2}\left\|\left(\mathbf{P}_{2}-\mathbf{P}_{1}\right) \times\left(\mathbf{P}_{3}-\mathbf{P}_{1}\right)\right\|
$$

## The Cross Product

Cross products obey the right hand rule

- If first vector points along right thumb, and second vector points along right fingers,
- Then cross product points out of right palm

Reversing order of vectors negates the cross product:

$$
\mathbf{W} \times \mathbf{V}=-\mathbf{V} \times \mathbf{W}
$$

- Cross product is anticommutative


## Cross Product Review



## Almost there.... Almost there.

## Transformations

Calculations are often carried out in many different coordinate systems
We must be able to transform information from one coordinate system to another easily
Matrix multiplication allows us to do this

## Transform Simplest Case

Simplest case is inverting one or more axis.


## Transformations

Suppose that the coordinate axes in one coordinate system correspond to the directions $\mathbf{R}, \mathbf{S}$, and $\mathbf{T}$ in another Then we transform a vector $\mathbf{V}$ to the RST system as follows

$$
\mathbf{W}=\left[\begin{array}{lll}
\mathbf{R} & \mathbf{S} & \mathbf{T}
\end{array}\right] \mathbf{V}=\left[\begin{array}{ccc}
R_{x} & S_{x} & T_{x} \\
R_{y} & S_{y} & T_{y} \\
R_{z} & S_{z} & T_{z}
\end{array}\right]\left[\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right]
$$

## Transformations

We transform back to the original system by inverting the matrix:

$$
\mathbf{V}=\left[\begin{array}{lll}
R_{x} & S_{x} & T_{x} \\
R_{y} & S_{y} & T_{y} \\
R_{z} & S_{z} & T_{z}
\end{array}\right]^{-1} \mathbf{W}
$$

Often, the matrix's inverse is equal to its transpose-such a matrix is called orthogonal

## Transformations

A $3 \times 3$ matrix can reorient the coordinate axes in any way, but it leaves the origin fixed
We must at a translation component D to move the origin:

$$
\mathbf{W}=\left[\begin{array}{ccc}
R_{x} & S_{x} & T_{x} \\
R_{y} & S_{y} & T_{y} \\
R_{z} & S_{z} & T_{z}
\end{array}\right]\left[\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right]+\left[\begin{array}{c}
D_{x} \\
D_{y} \\
D_{z}
\end{array}\right]
$$

## Transformations

## Homogeneous coordinates

- Four-dimensional space
- Combines $3 \times 3$ matrix and translation into one $4 \times 4$ matrix

$$
\mathbf{W}=\left[\begin{array}{cccc}
R_{x} & S_{x} & T_{x} & D_{x} \\
R_{y} & S_{y} & T_{y} & D_{y} \\
R_{z} & S_{z} & T_{z} & D_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
V_{x} \\
V_{y} \\
V_{z} \\
V_{w}
\end{array}\right]
$$

## Transformations

$\mathbf{V}$ is now a four-dimensional vector
The w-coordinate of $\mathbf{V}$ determines whether $\mathbf{V}$ is a point or a direction vector

- If $w=0$, then $\mathbf{V}$ is a direction vector and the fourth column of the transformation matrix has no effect
- If $w \neq 0$, then $\mathbf{V}$ is a point and the fourth column of the matrix translates the origin
- Normally, w=1 for points


## Transformations

Transformation matrices are often the result of combining several simple transformations

- Translations
- Scales
- Rotations

Transformations are combined by multiplying their matrices together

## Transformations

## Translation matrix

$$
\mathbf{M}_{\text {translate }}=\left[\begin{array}{lllc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Translates the origin by the vector $\mathbf{T}$

## Transformations

## Scale matrix

$$
\mathbf{M}_{\text {scale }}=\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Scales coordinate axes by $a, b$, and $c$ If $a=b=c$, the scale is uniform

## Transformations

## Rotation matrix

$\mathbf{M}_{z \text {-rotate }}=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotates points about the $z$-axis through the angle $\theta$

## Transformations

Similar matrices for rotations about $x, y$

$$
\begin{aligned}
& \mathbf{M}_{x \text {-rotate }}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{M}_{y \text {-rotate }}=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Transformations Review

We may wish to change an objects orientation, or it's vector information (Translate, Scale, Rotate, Skew). Storing an objects information in Vector form allows us to manipulate it in many ways at once.
We perform those manipulations using matrix multiplication operations.

## Transforms in Flash

http://help.adobe.com/en_US/ActionScript/3.0_ProgrammingAS3/WSF24A5A75-38D6-4a44-BDC6-927A2B123E90.html
private var rect2:Shape;
var matrix:Matrix3D = rect2.transform.matrix3D; matrix.appendRotation(15, Vector3D.X_AXIS); matrix.appendScale(1.2, 1, 1); matrix.appendTranslation(100, 50, 0); matrix.appendRotation(10, Vector3D.Z_AXIS); rect2.transform.matrix3D = matrix;

## Great Tutorials

## 2D Transformation

Rotating, Scaling and Translating

3D Transformation
Defining a Point Class
3d Transformations Using Matrices
Projection

## Vectors in Flash CS4

Adobe Library Link (note Dot and Cross Product)

