
Chapter 4.2
Collision Detection and Resolution

2

Collision Detection

Complicated for two reasons

1. Geometry is typically very complex,

potentially requiring expensive testing

2. Naïve solution is O(n2) time complexity,

since every object can potentially collide

with every other object

Collision Detection

Two basic techniques

1. Overlap testing

 Detects whether a collision has already

occurred

2. Intersection testing

 Predicts whether a collision will occur in the

future

4

Overlap Testing

 Facts

 Most common technique used in games

 Exhibits more error than intersection
testing

 Concept

 For every simulation step, test every pair
of objects to see if they overlap

 Easy for simple volumes like spheres,
harder for polygonal models

5

Overlap Testing:

Useful Results

 Useful results of detected collision

 Time collision took place

 Collision normal vector

6

Overlap Testing:

Collision Time

 Collision time calculated by moving object

back in time until right before collision

 Bisection is an effective technique

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5
t0.4375 t0.40625

BB B

A

A

A

A
A A

7

Overlap Testing:

Limitations

 Fails with objects that move too fast

 Unlikely to catch time slice during overlap

 Possible solutions

 Design constraint on speed of objects

 Reduce simulation step size

t0t-1 t1 t2

bullet

window

8

Intersection Testing

 Predict future collisions

 When predicted:

 Move simulation to time of collision

 Resolve collision

 Simulate remaining time step

9

Intersection Testing:

Swept Geometry

 Extrude geometry in direction of movement

 Swept sphere turns into a “capsule” shape

t0

t1

Reminder about nomenclature

A (bolded variables are vectors)

A (italicized variables are scalars)

In cases where the name is the same, the scalar is

the magnitude of the Vector (Pythagoras).

11

Intersection Testing:

Special Case, Sphere-Sphere

Q1

Q2

P1

P2

P

Q

t=0

t=0

t=1

t=1

t

,

2

2222

B

rrΑB
t

QP

BAΒΑ

 .QQPPB

QPA

1212

11

12

Intersection Testing:

Sphere-Sphere Collision

 Smallest distance ever separating two

spheres:

 If

there is a collision

2

2

22

B

BA
A=d

 22

QP rrd

13

Intersection Testing:

Limitations

 More costly then object overlap

 Issue with networked games

 Future predictions rely on exact state of world at
present time

 Due to packet latency, current state not always
coherent

 Assumes constant velocity and zero
acceleration over simulation step
 Has implications for physics model and choice of

integrator

14

Dealing with Complexity

Two issues

1. Complex geometry must be simplified

2. Reduce number of object pair tests

15

Dealing with Complexity:

Simplified Geometry

 Approximate complex objects with

simpler geometry, like this ellipsoid

 Or multiple spheres

16

Dealing with Complexity:

Minkowski Sum

 Two complex shapes might take

dozens of test to determine if they

overlap.

 By taking the Minkowski Sum of two

complex volumes and creating a new

volume, overlap can be found by

testing if a single point is within the

new volume

17

Dealing with Complexity:

Minkowski Sum

Y}B and :{ XABAYX

XY =YX XY =

18

Dealing with Complexity:

Minkowski Sum

t0

t1

t0

t1

19

Dealing with Complexity:

Bounding Volumes

 Bounding volume is a simple
geometric shape

 Completely encapsulates object

 If no collision with bounding volume, no
more testing is required

 Common bounding volumes

 Sphere

 Box

20

Dealing with Complexity:

Box Bounding Volumes

Axis-Aligned Bounding Box Oriented Bounding Box

21

Dealing with Complexity:

Achieving O(n) Time Complexity

One solution is to partition space

Game Entities – Identification (Hash Maps)

UID's allow multiple different lists or data structure over same object set.

Observer model (objects could register their current quadrant with CD object)

Dealing with Complexity:

Achieving O(n) Time Complexity

Another solution is the plane sweep algorithm

C

B

R

A

x

y

A0 A1 R0 B0 R1C0 C1B1

B0

B1

A1

A0

R1

R0

C1

C0

1. Find bounds in the X,

Y and Z planes.

2. Add values to

appropriate lists.

3. Lists are sorted initially

with quicksort

Θ(n(log(n))

4. Object coherence says

that objects from

frame to frame won't

move much.

5. Use bubblesort to do

fast update Θ(n).

Terrain Collision Detection:

Height Field Landscape

Polygonal mesh with/without height field

23

Top-Down View

Perspective View

Top-Down View (heights added)

Perspective View (heights added)

Terrain Collision Detection:

Locate Triangle on Height Field

Q is the heel of the foot of the character.

With triangle located determine height.
24

Q

R

Q

Qz >Qx

Qz <=Qx

z

x

Rz > 1 -Rx

Rz <= 1 -Rx

R

Flashback

Remember:

Dot product of two perpendicular vectors is 0.

Cross product of two vectors is a vector perpendicular

to the other two vectors.

Planes in 3D

Given a 3D point P<x,y,x> and a point N<A,B,C> we

can define a plane Q as the set of all points Q such

that the line from P to Q is perpendicular to the line

from P to N.

cos V W V W

Definition of a plane restated

Definition of a plane:

The set of points Q such that:

(N – P) ∙ (Q – P) = 0

Note: We commonly reduce N to a distance vector

and when w do the equation becomes:

N ∙ (Q – P) = 0

Your book persists in calling N a normal vector, which

would only make sense if the plane is already

defined.

27

Terrain Collision Detection:

Locate Point on Triangle

 Plane equation:

 A, B, C are the x, y, z components of the

plane’s normal vector

 Where

with one of the triangles

vertices being

 Giving:

0 DCzByAx

0PND

0P

 00 PNNNN zyx zyx

28

Terrain Collision Detection:

Locate Point on Triangle

 The normal can be constructed by taking the

cross product of two sides:

 Solve for y and insert the x and z

components of Q, giving the final equation

for point within triangle:

 0201 PPPPN

y

zzxx

y
N

PNQNQN
Q 0

29

Collision Resolution:

Examples

 Two billiard balls strike
 Calculate ball positions at time of impact

 Impart new velocities on balls

 Play “clinking” sound effect

 Rocket slams into wall
 Rocket disappears

 Explosion spawned and explosion sound effect

 Wall charred and area damage inflicted on nearby

characters

 Character walks through wall
 Magical sound effect triggered

 No trajectories or velocities affected

30

Collision Resolution:

Parts

 Resolution has three parts

1. Prologue

2. Collision

3. Epilogue

31

Prologue

 Collision known to have occurred

 Check if collision should be ignored

 Other events might be triggered

 Sound effects

 Send collision notification messages

32

Collision

 Place objects at point of impact

 Assign new velocities

 Using physics

 Vector mathematics

 Using some other decision logic

33

Epilogue

 Propagate post-collision effects

 Possible effects

 Destroy one or both objects

 Play sound effect

 Inflict damage

 Many effects can be done either in the

prologue or epilogue

34

Collision Resolution:

Resolving Overlap Testing

1. Extract collision normal

2. Extract penetration depth

3. Move the two objects apart

4. Compute new velocities

35

Collision Resolution:

Extract Collision Normal

 Find position of objects before impact

 Use two closest points to construct the

collision normal vector

36

Collision Resolution:

Extract Collision Normal

 Sphere collision normal vector

 Difference between centers at point of collision

t0

t0

t0.25

t0.5

t0.25

t0.5

t0.75

t0.75

t1

t1

 Collision Normal

37

Collision Resolution:

Resolving Intersection Testing

 Simpler than resolving overlap testing

 No need to find penetration depth or

move objects apart

 Simply

1. Extract collision normal

2. Compute new velocities

The End

