Chapter 4.2
Collision Detection and Resolution
Collision Detection

Complicated for two reasons

1. Geometry is typically very complex, potentially requiring expensive testing
2. Naïve solution is $O(n^2)$ time complexity, since every object can potentially collide with every other object
Collision Detection

Two basic techniques

1. Overlap testing
 -Detects whether a collision has already occurred

2. Intersection testing
 -Predicts whether a collision will occur in the future
Overlap Testing

- **Facts**
 - Most common technique used in games
 - Exhibits more error than intersection testing

- **Concept**
 - For every simulation step, test every pair of objects to see if they overlap
 - Easy for simple volumes like spheres, harder for polygonal models
Overlap Testing: Useful Results

- Useful results of detected collision
 - Time collision took place
 - Collision normal vector
Overlap Testing: Collision Time

- Collision time calculated by moving object back in time until right before collision
 - Bisection is an effective technique
Overlap Testing: Limitations

- Fails with objects that move too fast
 - Unlikely to catch time slice during overlap

- Possible solutions
 - Design constraint on speed of objects
 - Reduce simulation step size
Intersection Testing

- Predict future collisions
- When predicted:
 - Move simulation to time of collision
 - Resolve collision
 - Simulate remaining time step
Intersection Testing: Swept Geometry

- Extrude geometry in direction of movement
- Swept sphere turns into a “capsule” shape
Reminder about nomenclature

A (bolded variables are vectors)

A (italicized variables are scalars)

In cases where the name is the same, the scalar is the magnitude of the Vector (Pythagoras).
Intersection Testing:
Special Case, Sphere-Sphere

\[t = 0, 1 \]

\[\mathbf{P}_1 \]
\[\mathbf{Q}_1 \]
\[\mathbf{P}_2 \]
\[\mathbf{Q}_2 \]

\[\mathbf{B} \]

\[a \mathbf{x}^2 + b \mathbf{x} + c = 0, \]
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \]
Intersection Testing: Sphere-Sphere Collision

- Smallest distance ever separating two spheres:
 \[d^2 = A^2 - \frac{(A \cdot B)^2}{B^2} \]

- If \[d^2 < (r_p + r_q)^2 \]
 there is a collision
Intersection Testing: Limitations

- More costly than object overlap
- Issue with networked games
 - Future predictions rely on exact state of world at present time
 - Due to packet latency, current state not always coherent

- Assumes constant velocity and zero acceleration over simulation step
 - Has implications for physics model and choice of integrator
Dealing with Complexity

Two issues

1. Complex geometry must be simplified
2. Reduce number of object pair tests
Dealing with Complexity: Simplified Geometry

- Approximate complex objects with simpler geometry, like this ellipsoid

- Or multiple spheres
Dealing with Complexity: Minkowski Sum

- Two complex shapes might take dozens of test to determine if they overlap.
- By taking the Minkowski Sum of two complex volumes and creating a new volume, overlap can be found by testing if a single point is within the new volume
Dealing with Complexity: Minkowski Sum

\[X \oplus Y = XY = X \odot Y \]
Dealing with Complexity: Minkowski Sum
Dealing with Complexity: Bounding Volumes

- Bounding volume is a simple geometric shape
 - Completely encapsulates object
 - If no collision with bounding volume, no more testing is required

- Common bounding volumes
 - Sphere
 - Box
Dealing with Complexity: Box Bounding Volumes

Axis-Aligned Bounding Box

Oriented Bounding Box
Dealing with Complexity: Achieving O(n) Time Complexity

One solution is to partition space

Game Entities – Identification (Hash Maps)

UID's allow multiple different lists or data structure over same object set.
Observer model (objects could register their current quadrant with CD object)
Dealing with Complexity: Achieving $O(n)$ Time Complexity

Another solution is the plane sweep algorithm

1. Find bounds in the X, Y and Z planes.
2. Add values to appropriate lists.
3. Lists are sorted initially with quicksort $\Theta(n\log(n))$
4. Object coherence says that objects from frame to frame won't move much.
5. Use bubblesort to do fast update $\Theta(n)$.
Terrain Collision Detection: Height Field Landscape

Polygonal mesh with/without height field
Terrain Collision Detection: Locate Triangle on Height Field

Q is the heel of the foot of the character. With triangle located determine height.
Flashback

Remember:
Dot product of two perpendicular vectors is 0.
\[\mathbf{V} \cdot \mathbf{W} = \|\mathbf{V}\| \|\mathbf{W}\| \cos \alpha \]
Cross product of two vectors is a vector perpendicular to the other two vectors.

Planes in 3D
Given a 3D point \(\mathbf{P} \langle x, y, z \rangle \) and a point \(\mathbf{N} \langle A, B, C \rangle \) we can define a plane \(\mathbf{Q} \) as the set of all points \(\mathbf{Q} \) such that the line from \(\mathbf{P} \) to \(\mathbf{Q} \) is perpendicular to the line from \(\mathbf{P} \) to \(\mathbf{N} \).
Definition of a plane restated

Definition of a plane:
The set of points Q such that:

\[(N - P) \cdot (Q - P) = 0\]

Note: We commonly reduce \(N\) to a distance vector and when we do the equation becomes:

\[N \cdot (Q - P) = 0\]

Your book persists in calling \(N\) a normal vector, which would only make sense if the plane is already defined.
Terrain Collision Detection: Locate Point on Triangle

- Plane equation:

- A, B, C are the x, y, z components of the plane’s normal vector

- Where \(D = -\mathbf{N} \cdot \mathbf{P}_0 \)

- with one of the triangles vertices being \(\mathbf{P}_0 \)

- Giving:
Terrain Collision Detection: Locate Point on Triangle

- The normal can be constructed by taking the cross product of two sides:

\[
\mathbf{N} = \mathbf{PP}_1 \times \mathbf{PP}_2
\]

- Solve for \(y \) and insert the \(x \) and \(z \) components of \(\mathbf{Q} \), giving the final equation for point within triangle:

\[
\mathbf{Q} = \mathbf{xx} \cdot \mathbf{Q}_2 \mathbf{N}
\]
Collision Resolution: Examples

- Two billiard balls strike
 - Calculate ball positions at time of impact
 - Impart new velocities on balls
 - Play “clinking” sound effect

- Rocket slams into wall
 - Rocket disappears
 - Explosion spawned and explosion sound effect
 - Wall charred and area damage inflicted on nearby characters

- Character walks through wall
 - Magical sound effect triggered
 - No trajectories or velocities affected
Collision Resolution: Parts

- Resolution has three parts
 1. Prologue
 2. Collision
 3. Epilogue
Prologue

- Collision known to have occurred
- Check if collision should be ignored
- Other events might be triggered
 - Sound effects
 - Send collision notification messages
Collision

- Place objects at point of impact
- Assign new velocities
 - Using physics
 - Vector mathematics
 - Using some other decision logic
Epilogue

- Propagate post-collision effects
- Possible effects
 - Destroy one or both objects
 - Play sound effect
 - Inflict damage
- Many effects can be done either in the prologue or epilogue
Collision Resolution: Resolving Overlap Testing

1. Extract collision normal
2. Extract penetration depth
3. Move the two objects apart
4. Compute new velocities
Collision Resolution:
Extract Collision Normal

- Find position of objects before impact
- Use two closest points to construct the collision normal vector
Collision Resolution: Extract Collision Normal

- Sphere collision normal vector
 - Difference between centers at point of collision
Collision Resolution: Resolving Intersection Testing

- Simpler than resolving overlap testing
 - No need to find penetration depth or move objects apart

- Simply
 1. Extract collision normal
 2. Compute new velocities
The End