Chapter 4.3
Real-time Game Physics

Outline

Introduction

- Motivation for including physics in games
- Practical development team decisions
- Particle Physics
- Particle Kinematics
- Closed-form Equations of Motion
- Numerical Simulation
- Finite Difference Methods
- Explicit Euler Integration
- Verlet Integration
- Brief Overview of Generalized Rigid Bodies
- Brief Overview of Collision Response
- Final Comments

Real-time Game Physics

Introduction

Why Physics?

The Human Experience

- Real-world motions are physically-based
- Physics can make simulated game worlds appear more natural
- Makes sense to strive for physically-realistic motion for some types of games
Emergent Behavior
- Physics simulation can enable a richer gaming experience

Why Physics?

Developer/Publisher Cost Savings

- Classic approaches to creating realistic motion:
- Artist-created keyframe animations
- Motion capture
- Both are labor intensive and expensive
- Physics simulation:
- Motion generated by algorithm

Theoretically requires only minimal artist input
Potential to substantially reduce content development cost

High-level Decisions

Physics in Digital Content Creation Software:

- Many DCC modeling tools provide physics
- Export physics-engine-generated animation as keyframe data
- Enables incorporation of physics into game engines that do not support real-time physics
- Straightforward update of existing asset creation pipelines
- Does not provide player with the same emergent-behavior-rich game experience
- Does not provide full cost savings to developer/publisher

High-level Decisions

Real-time Physics in Game at Runtime:

- Enables the emergent behavior that provides player a richer game experience
- Potential to provide full cost savings to developer/publisher
- May require significant upgrade of game engine
- May require significant update of asset creation pipelines
- May require special training for modelers, animators, and level designers
- Licensing an existing engine may significantly increase third party middleware costs

High-level Decisions

License vs. Build Physics Engine:

- License middleware physics engine

Complete solution from day 1

- Proven, robust code base (in theory)
- Most offer some integration with DCC tools

Features are always a tradeoff

High-level Decisions

License vs. Build Physics Engine:

- Build physics engine in-house

Choose only the features you need
Opportunity for more game-specific optimizations

- Greater opportunity to innovate
- Cost can be easily be much greater
- No asset pipeline at start of development

Real-time Game Physics

The Beginning: Particle Physics

The Beginning: Particle Physics

What is a Particle?

- A sphere of finite radius with a perfectly smooth, frictionless surface
- Experiences no rotational motion

Particle Kinematics

- Defines the basic properties of particle motion
- Position, Velocity, Acceleration

Particle Kinematics - Position

Location of Particle in World Space

- SI Units: meters (m)

$$
0=\left\langle D_{x,} P_{y,} P_{z}\right\rangle
$$

- Changes over time when object moves

Particle Kinematics - Velocity and Acceleration

Velocity (SI units: m/s)

- First time derivative of position:

$$
\mathbf{V}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{p}(t+\Delta t)-\mathbf{p}(t)}{\Delta t}=\frac{d}{d t} \mathbf{p}(t)
$$

Acceleration (SI units: m/s ${ }^{2}$)

- First time derivative of velocity
- Second time derivative of position

$$
\mathbf{a}(t)=\frac{d}{d t} \mathbf{V}(t)=\frac{d^{2}}{d t^{2}} \mathbf{p}(t)
$$

Newton's $2^{\text {nd }}$ Law of Motion

Paraphrased - "An object's change in velocity is proportional to an applied force" The Classic Equation:

$$
\mathbf{F}(t)=m \mathbf{a}(t)
$$

- $m=$ mass (SI units: kilograms, kg)
- $\mathbf{F}(t)$ = force (SI units: Newtons)

What is Physics Simulation?

The Cycle of Motion:

- Force, $\mathbf{F}(t)$, causes acceleration
- Acceleration, a(t), causes a change in velocity
- Velocity, $\mathbf{V}(t)$ causes a change in position
- Physics Simulation:
- Solving variations of the above equations over time to emulate the cycle of motion

Example: 3D Projectile Motion

Constant Force

- Weight of the projectile, $\mathbf{W}=m \mathbf{g}$
- \mathbf{g} is constant acceleration due to gravity

Closed-form Projectile Equations of Motion:

$$
\begin{aligned}
& \mathbf{V}(t)=\mathbf{V}_{\text {init }}+\mathbf{g}\left(t-t_{\text {init }}\right) \\
& \mathbf{p}(t)=\mathbf{p}_{\text {init }}+\mathbf{V}_{\text {init }}\left(t-t_{\text {init }}\right)+\frac{1}{2} \mathbf{g}\left(t-t_{\text {init }}\right)^{2}
\end{aligned}
$$

- These closed-form equations are valid, and exact*, for any time, t, in seconds, greater than or equal to $t_{\text {init }}$

Example: 3D Projectile Motion

Initial Value Problem

- Simulation begins at time $t_{\text {init }}$
- The initial velocity, $\mathbf{V}_{\text {init }}$ and position, $\mathbf{p}_{\text {init }}$ at time $t_{\text {init }}$ are known
- Solve for later values at any future time, t, based on these initial values
On Earth:
- If we choose positive Z to be straight up (away from center of Earth), $g_{\text {Earth }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$:

$$
\mathbf{g}_{\text {Earth }}=-g_{\text {Earth }} \hat{k}=\langle 0.0,0.0,-9.81\rangle \mathrm{m} / \mathrm{s}^{2}
$$

Concrete Example: Target Practice

Choose $\mathbf{V}_{\text {init }}$ to Hit a Stationary Target

- $\mathbf{p}_{\text {target }}$ is the stationary target location
- We would like to choose the initial velocity, $\mathbf{V}_{\text {init }}$ required to hit the target at some future time, $t_{h i t}$.
- Here is our equation of motion at time $t_{h i t}$:

$$
\mathbf{p}_{\text {turget }}=\mathbf{p}_{\text {init }}+\mathbf{V}_{\text {init }}\left(t_{\text {hit }}-t_{\text {init }}\right)+\frac{1}{2} \mathbf{g}\left(t_{\text {hit }}-t_{\text {init }}\right)^{2}
$$

- Solution in general is a bit tedious to derive...
- Infinite number of solutions!
- Hint: Specify the magnitude of $\mathbf{V}_{\text {init }}$, solve for its direction

Concrete Example: Target Practice

Choose Scalar launch speed, $V_{\text {init }}$ and Let:

$$
\mathbf{V}_{\text {init }}=\left\langle V_{\text {init }} \cos \theta \cos \phi, V_{\text {init }} \sin \theta \cos \phi, V_{\text {init }} \sin \phi\right\rangle
$$

Where:

$$
\begin{aligned}
& \cos \theta=\frac{p_{\text {target }, x}-p_{\text {init }, x}}{\sqrt{\left(p_{\text {target }, x}-p_{\text {init }, x}\right)^{2}-\left(p_{\text {target }, y}-p_{\text {init }, y}\right)^{2}}} ; \sin \theta=\frac{p_{\text {target }, y}-p_{\text {init }, y}}{\sqrt{\left(p_{\text {target }, x}-p_{\text {init }, x}\right)^{2}-\left(p_{\text {target }, y}-p_{\text {init }, y}\right)^{2}}} \\
& \tan \phi=\frac{\sqrt{A^{2}-2 g\left(\frac{A}{V_{\text {init }}}\right)^{2}\left(\frac{1}{2} g\left(\frac{A}{V_{\text {init }}}\right)^{2}+p_{\text {target }, z}-p_{\text {init }, z}\right)}\left(\frac{V_{\text {init }}}{A}\right)^{2}}{g} \\
& A=\frac{\left(p_{\text {target }, y}+p_{\text {target }, x}\right)-\left(p_{\text {init }, y}+p_{\text {init }, x}\right)}{(\cos \theta+\sin \theta)}
\end{aligned}
$$

Concrete Example: Target Practice

If Radicand in $\tan \phi$ Equation is Negative:

- No solution. $V_{\text {init }}$ is too small to hit the target
if $\left(A^{2}-2 g\left(\frac{A}{V_{\text {init }}}\right)^{2}\left(\frac{1}{2} g\left(\frac{A}{V_{\text {init }}}\right)^{2}+p_{\text {target }, z}-p_{\text {initit }}\right)\right)<0$, then no solution!

Otherwise:

- One solution if radicand $==0$
- If radicand >0, TWO possible launch angles, ϕ

Smallest ϕ yields earlier time of arrival, $t_{h i t}$
= Largest ϕ yields later time of arrival, $t_{\text {hit }}$

Target Practice A Few Examples

$$
V_{\text {init }}=25 \mathrm{~m} / \mathrm{s}
$$

Value of Radicand of $\tan \phi$ equation: 969.31 Launch angle $\phi: 19.4$ deg or 70.6 deg

Target Practice A Few Examples

$V_{\text {init }}=20 \mathrm{~m} / \mathrm{s}$
Value of Radicand of $\tan \phi$ equation: $\mathbf{6 0 . 2}$ Launch angle ϕ : 39.4 deg or 50.6 deg

Target Practice A Few Examples

$V_{\text {init }}=19.85 \mathrm{~m} / \mathrm{s}$
Value of Radicand of $\tan \phi$ equation: $\mathbf{1 3 . 2}$
Launch angle $\phi: 42.4$ deg or 47.6 deg (note convergence)

Target Practice - A Few Examples

```
\(V_{\text {init }}=19 \mathrm{~m} / \mathrm{s}\)
Value of Radicand of \(\tan \phi\) equation: -290.4
Launch angle \(\phi\) : No solution! \(V_{\text {init }}\) too small to reach target!
```


Target Practice - A Few Examples

$$
\begin{aligned}
& V_{\text {init }}=18 \mathrm{~m} / \mathrm{s} \\
& \text { Value of Radicand of } \tan \phi \text { equation: } 2063 \\
& \text { Launch angle } \phi:-6.38 \text { deg or } 60.4 \mathrm{deg}
\end{aligned}
$$

Target Practice A Few Examples

$V_{\text {init }}=30 \mathrm{~m} / \mathrm{s}$
Value of Radicand of $\tan \phi$ equation: 668 Launch angle ϕ : 39.1 deg or 75.2 deg

Stop Here

Real-time Game Physics

Practical Implementation: Numerical Simulation

What is Numerical Simulation?

Equations Presented Above

- They are "closed-form"
- Valid and exact for constant applied force
- Do not require time-stepping

Just determine current game time, t, using system timer

- e.g., $t=$ QueryPerformanceCounter /

QueryPerformanceFrequency or equivalent on Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ platforms
Plug t and $t_{\text {init }}$ into the equations
Equations produce identical, repeatable, stable results, for any time, t, regardless of CPU speed and frame rate

What is Numerical Simulation?

The above sounds perfect
Why not use those equations always?

- Constant forces aren't very interesting

Simple projectiles only

- Closed-form solutions rarely exist for interesting (nonconstant) forces
We need a way to deal when there is no closed-form solution...

Numerical Simulation represents a series of techniques for incrementally solving the equations of motion when forces applied to an object are not constant, or when otherwise there is no closed-form solution

Finite Difference Methods

What are They?

- The most common family of numerical techniques for rigid-body dynamics simulation
- Incremental "solution" to equations of motion
- Derived using truncated Taylor Series expansions
- See text for a more detailed introduction
"Numerical Integrator"
- This is what we generically call a finite difference equation that generates a "solution" over time

Finite Difference Methods

The Explicit Euler Integrator:

$$
\underbrace{\mathbf{S}(t+\Delta t)}_{\text {new state }}=\underbrace{\mathbf{S}(t)}_{\text {prior state }}+\Delta t \underbrace{\frac{d}{d t} \mathbf{S}(t)}_{\text {statederivative }}
$$

Properties of object are stored in a state vector, \mathbf{S}
Use the above integrator equation to incrementally update \mathbf{S} over time as game progresses

- Must keep track of prior value of \mathbf{S} in order to compute the new
- For Explicit Euler, one choice of state and state derivative for particle:

$$
\mathbf{S}=\langle m \mathbf{V}, \mathbf{p}\rangle \quad d \mathbf{S} / d t=\langle\mathbf{F}, \mathbf{V}\rangle
$$

Explicit Euler Integration

$V_{\text {init }}=30 \mathrm{~m} / \mathrm{s}$
Launch angle, ϕ : 75.2 deg (slow arrival)
Launch angle, $\theta: 0 \mathrm{deg}$ (motion in world xz plane)
Mass of projectile, $m: 2.5 \mathrm{~kg}$
Target at <50, 0, 20> meters

Explicit Euler Integration

]			$\Delta t=.2 \mathrm{~s}$	$\Delta t=.1 \mathrm{~s}$	$\Delta t=.01 \mathrm{~s}$
$\mathbf{S}(t+\Delta t)=\mathbf{S}(t)+\Delta t \frac{d}{d t} \mathbf{S}(t)=$	$\left[\begin{array}{c}19.2 \\ 0.0 \\ 72.5 \\ 10.0 \\ 0.0 \\ 2.0\end{array}\right.$	($+\Delta t\left[\begin{array}{c}0.0 \\ 0.0 \\ -24.53 \\ 7.68 \\ 0.0\end{array}\right]$	$=\left[\begin{array}{c}19.2025 \\ 0.0 \\ 67.5951 \\ 11.5362 \\ 0.0\end{array}\right]$	$=\left[\begin{array}{c}19.2025 \\ 0.0 \\ 72.0476 \\ 10.7681 \\ 0.0\end{array}\right]$	$=\left[\begin{array}{c}19.2025 \\ 0.0 \\ 72.2549 \\ 10.0768 \\ 0.0\end{array}\right]$

Exact, Closed - form Solution $\left.\begin{array}{|c}{\left[\begin{array}{c}19.2 \\ 0.0 \\ 67.5951 \\ 11.5362 \\ 0.0\end{array}\right]} \\ \hline 7.6038\end{array}\right]=\left[\begin{array}{c}19.2 \\ 0.0 \\ 72.0476 \\ 10.1536 \\ 0.0\end{array}\right]\left[\begin{array}{c}4.8510\end{array}\right]=\left[\begin{array}{c}19.2 \\ 0.0 \\ 72.2549 \\ 10.0768 \\ 0.0\end{array}\right]$

A Tangent: Truncation Error

The previous slide highlights values in the numerical solution that are different from the exact, closed-form solution

This difference between the exact solution and the numerical solution is primarily truncation error
Truncation error is equal and opposite to the value of terms that were removed from the Taylor Series expansion to produce the finite difference equation
Truncation error, left unchecked, can accumulate to cause simulation to become unstable

- This ultimately produces floating point overflow
- Unstable simulations behave unpredictably

A Tangent: Truncation Error

Controlling Truncation Error

- Under certain circumstances, truncation error can become zero, e.g., the finite difference equation produces the exact, correct result

For example, when zero force is applied

- More often in practice, truncation error is nonzero
- Approaches to control truncation error:

Reduce time step, Δt
Select a different numerical integrator

- See text for more background information and references

Explicit Euler Integration Truncation Error

Lets Look at Truncation Error (position only)
Truncation Error $(\Delta \mathrm{t}=0.2 \mathrm{~s})=\left[\begin{array}{c}11.5362 \\ 0.0 \\ 7.800\end{array}\right]_{\text {numerical }}-\left[\begin{array}{c}11.5362 \\ 0.0 \\ 7.6038\end{array}\right]_{\text {exact }}$
Truncation Error $(\Delta \mathrm{t}=0.1 \mathrm{~s})=\left[\begin{array}{c}10.1536 \\ 0.0 \\ 4.9000\end{array}\right]_{\text {numerical }}-\left[\begin{array}{c}10.1536 \\ 0.0 \\ 4.8510\end{array}\right]_{\text {exact }}$
Truncation Error $(\Delta \mathrm{t}=0.01 \mathrm{~s})=\left[\begin{array}{c}10.0768 \\ 0.0 \\ 2.2900\end{array}\right]_{\text {numerical }}-\left[\begin{array}{c}10.0768 \\ 0.0 \\ 2.2895\end{array}\right]_{\text {exact }}$

Truncation Error
$=\left[\begin{array}{c}0.0 \\ 0.0 \\ 0.1962\end{array}\right]$
$\left[\begin{array}{c}0.0 \\ 0.0 \\ 0.049\end{array}\right]$

$$
\left[\begin{array}{c}
0.0 \\
0.0 \\
0.0005
\end{array}\right]
$$

Explicit Euler Integration Truncation Error

Explicit Euler Integration Computing Solution Over Time

The solution proceeds step-by-step, each time integrating from the prior state

Time	Position (m)			Linear Momentum (kg-m/s)			Force (N)			Velocity (m/s)		
	p_{x}	$p_{\text {y }}$	p_{z}	$m V_{\text {x }}$	$m V_{\text {y }}$	$m V_{z}$	$F_{\text {x }}$	$F_{\text {y }}$	$F_{\text {z }}$	$V_{\text {x }}$	V_{y}	V_{z}
5.00	10.00	0.00	2.00	19.20	0.00	72.50	0.00	0.00	-24.53	7.68	0.00	29.00
5.20	11.54	0.00	7.80	19.20	0.00	67.60	0.00	0.00	-24.53	7.68	0.00	27.04
5.40	13.07	0.00	13.21	19.20	0.00	62.69	0.00	0.00	-24.53	7.68	0.00	25.08
5.60	14.61	0.00	18.22	19.20	0.00	57.79	0.00	0.00	-24.53	7.68	0.00	23.11
10.40	51.48	0.00	20.87	19.20	0.00	-59.93	0.00	0.00	-24.53	7.68	0.00	-23.97
50.00] Projectile Launch												
$\bar{\xi}_{40.00-\quad \diamond \text { Projectile Launch }}$												
30.00 of of or or												
- 20.00 - Closed-Form												
$\begin{array}{ll} \overline{\mathscr{O}} & 20.00 \\ \text { 춘 } & 10.00 \end{array}$												
			0.00			40.00	60.					
Horizontal Position (m)												

Finite Difference Methods

The Verlet Integrator:

$$
\underbrace{\mathbf{S}(t+\Delta t)}_{\text {new state }}=2 \underbrace{\mathbf{S}(t)}_{\text {prior state 1 }}-\underbrace{\mathbf{S}(t-\Delta t)}_{\text {prior state } 2}+(\Delta t)^{2} \underbrace{\left(\frac{d^{2}}{d t^{2}} \mathbf{S}(t)\right)}_{\text {state derivative }}
$$

Must store state at two prior time steps, $\mathbf{S}(t)$ and $\mathbf{S}(t-\Delta t)$ Uses second derivative of state instead of the first

- Valid for constant time step only (as shown above)
- For Verlet, choice of state and state derivative for a particle:

$$
\mathbf{S}=\langle\mathbf{p}\rangle \quad d^{2} \mathbf{S} / d t^{2}=\langle\mathbf{F} / m\rangle=\langle\mathbf{a}\rangle
$$

Verlet Integration

Since Verlet requires two prior values of state, $\mathbf{S}(t)$ and $\mathbf{S}(t-\Delta t)$, you must use some method other than Verlet to produce the first numerical state after start of simulation, $\mathbf{S}\left(t_{\text {init }}+\Delta t\right)$

- Solution: Use explicit Euler integration to produce $\mathbf{S}\left(t_{\text {init }}+\Delta t\right)$, then Verlet for all subsequent time steps

Verlet Integration

The solution proceeds step-by-step, each time integrating from the prior two states

For constant acceleration, Verlet integration produces results identical to those of explicit Euler

- But, results are different when non-constant forces are applied
- Verlet Integration tends to be more stable than explicit Euler for generalized forces

Real-time Game Physics

Generalized Rigid Bodies

Generalized Rigid Bodies

Key Differences from Particles

- Not necessarily spherical in shape
- Position, p, represents object's center-of-mass location
- Surface may not be perfectly smooth
= Friction forces may be present
- Experience rotational motion in addition to translational (position only) motion

Generalized Rigid Bodies Simulation

Angular Kinematics

- Orientation, 3×3 matrix \mathbf{R} or quaternion, q
- Angular velocity, ω
- As with translational/particle kinematics, all properties are measured in world coordinates
Additional Object Properties
- Inertia tensor, J
- Center-of-mass

Additional State Properties for Simulation

- Orientation
- Angular momentum, L=J ω
- Corresponding state derivatives

Generalized Rigid Bodies Simulation

Torque

- Analogous to a force
- Causes rotational acceleration
- Cause a change in angular momentum
- Torque is the result of a force (friction, collision response, spring, damper, etc.)

Generalized Rigid Bodies Numerical Simulation

Using Finite Difference Integrators

- Translational components of state $\langle m \mathbf{V}, \mathbf{p}\rangle$ are the same
- \mathbf{S} and $d \mathbf{S} / d t$ are expanded to include angular momentum and orientation, and their derivatives
- Be careful about coordinate system representation for \mathbf{J}, \mathbf{R}, etc.
- Otherwise, integration step is identical to the translation only case Additional Post-integration Steps
- Adjust orientation for consistency
- Adjust updated \mathbf{R} to ensure it is orthogonal

Normalize q

- Update angular velocity, ω
- See text for more details

Collision Response

Why?

- Performed to keep objects from interpenetrating
- To ensure behavior similar to real-world objects

Two Basic Approaches

- Approach 1: Instantaneous change of velocity at time of collision
- Benefits:
- Visually the objects never interpenetrate
- Result is generated via closed-form equations, and is perfectly stable
Difficulties:
- Precise detection of time and location of collision can be prohibitively expensive (frame rate killer)
- Logic to manage state is complex

Collision Response

Two Basic Approaches (continued)

- Approach 2: Gradual change of velocity and position over time, following collision

Benefits

- Does not require precise detection of time and location of collision
- State management is easy
- Potential to be more realistic, if meshes are adjusted to deform according to predicted interpenetration

Difficulties

- Object interpenetration is likely, and parameters must be tweaked to manage this
- Simulation can be subject to numerical instabilities, often requiring the use of implicit finite difference methods

Final Comments

Instantaneous Collision Response

- Classical approach: Impulse-momentum equations See text for full details
Gradual Collision Response
- Classical approach: Penalty force methods
- Resolve interpenetration over the course of a few integration steps
- Penalty forces can wreak havoc on numerical integration
- Instabilities galore
- Implicit finite difference equations can handle it
- But more difficult to code
- Geometric approach: Ignore physical response equations Enforce purely geometric constraints once interpenetration has occurred

Fixed Time Step Simulation

Numerical simulation works best if the simulator uses a fixed time step

- e.g., choose $\Delta t=0.02$ seconds for physics updates of $1 / 50$ second
- Do not change Δt to correspond to frame rate
- Instead, write an inner loop that allows physics simulation to catch up with frame rate, or wait for frames to catch up with physics before continuing
- This is easy to do
- Read the text for more details and references!

Final Comments

Simple Games

- Closed-form particle equations may be all you need
- Numerical particle simulation adds flexibility without much coding effort
- Collision detection is probably the most difficult part of this
Generalized Rigid Body Simulation
- Includes rotational effects and interesting (nonconstant) forces
- See text for details on how to get started

Final Comments

Full-Up Simulation

- The text and this presentation just barely touch the surface
- Additional considerations
- Multiple simultaneous collision points
- Articulating rigid body chains, with joints
- Friction, rolling friction, friction during collision
- Mechanically applied forces (motors, etc.)
- Resting contact/stacking
- Breakable objects
- Soft bodies
- Smoke, clouds, and other gases
- Water, oil, and other fluids

