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Why Physics?

 The Human Experience
 Real-world motions are physically-based

 Physics can make simulated game worlds appear 
more natural

 Makes sense to strive for physically-realistic 
motion for some types of games

 Emergent Behavior
 Physics simulation can enable a richer gaming 

experience
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Why Physics?

 Developer/Publisher Cost Savings

 Classic approaches to creating realistic motion:

 Artist-created keyframe animations

 Motion capture

 Both are labor intensive and expensive

 Physics simulation:

 Motion generated by algorithm

 Theoretically requires only minimal artist input

 Potential to substantially reduce content development 
cost
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High-level Decisions

 Physics in Digital Content Creation Software:
 Many DCC modeling tools provide physics
 Export physics-engine-generated animation as 

keyframe data
 Enables incorporation of physics into game 

engines that do not support real-time physics
 Straightforward update of existing asset creation 

pipelines
 Does not provide player with the same emergent-

behavior-rich game experience
 Does not provide full cost savings to 

developer/publisher
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High-level Decisions

 Real-time Physics in Game at Runtime:
 Enables the emergent behavior that provides 

player a richer game experience
 Potential to provide full cost savings to 

developer/publisher
 May require significant upgrade of game engine
 May require significant update of asset creation 

pipelines
 May require special training for modelers, 

animators, and level designers
 Licensing an existing engine may significantly 

increase third party middleware costs
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High-level Decisions

 License vs. Build Physics Engine:

 License middleware physics engine

 Complete solution from day 1

 Proven, robust code base (in theory)

 Most offer some integration with DCC tools

 Features are always a tradeoff
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High-level Decisions

 License vs. Build Physics Engine:

 Build physics engine in-house

 Choose only the features you need

 Opportunity for more game-specific optimizations

 Greater opportunity to innovate

 Cost can be easily be much greater

 No asset pipeline at start of development



Real-time Game Physics

The Beginning: Particle Physics
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The Beginning: Particle 
Physics

 What is a Particle?

 A sphere of finite radius with a perfectly smooth, 
frictionless surface

 Experiences no rotational motion

 Particle Kinematics

 Defines the basic properties of particle motion

 Position, Velocity, Acceleration
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 Location of Particle in World Space

 SI Units: meters (m)

 Changes over time when object moves

p(
t)

p(t+
t)

Particle Kinematics - Position

zyx ppp ,,p
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Particle Kinematics - Velocity 
and Acceleration

 Velocity (SI units: m/s)

 First time derivative of position:

 Acceleration (SI units: m/s2)

 First time derivative of velocity

 Second time derivative of position
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Newton’s 2nd Law of Motion

 Paraphrased – “An object’s change in velocity 
is proportional to an applied force”

 The Classic Equation:

 m = mass (SI units: kilograms, kg)

 F(t) = force (SI units: Newtons)

   tmt aF 
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What is Physics Simulation?

 The Cycle of Motion:

 Force, F(t), causes acceleration
 Acceleration, a(t), causes a change in velocity
 Velocity, V(t) causes a change in position

 Physics Simulation:

 Solving variations of the above equations over 
time to emulate the cycle of motion
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Example: 3D Projectile Motion

 Constant Force
 Weight of the projectile, W = mg

 g is constant acceleration due to gravity

 Closed-form Projectile Equations of Motion:

 These closed-form equations are valid, and 
exact*, for any time, t, in seconds, greater than or 
equal to tinit

 initinit ttt  gVV )(

   2
2

1
)( initinitinitinit ttttt  gVpp
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Example: 3D Projectile Motion

 Initial Value Problem
 Simulation begins at time tinit

 The initial velocity, Vinit and position, pinit, at time 
tinit, are known

 Solve for later values at any future time, t, based 
on these initial values

 On Earth:
 If we choose positive Z to be straight up (away 

from center of Earth), gEarth = 9.81 m/s2:

2m/s 81.9,0.0,0.0ˆ  kgEarthEarthg
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Concrete Example: Target 
Practice

V
in

it

F = weight = mg
Target

Projectile Launch
Position, pinit
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 Choose Vinit to Hit a Stationary Target
 ptarget is the stationary target location

 We would like to choose the initial velocity, Vinit, 
required to hit the target at some future time, thit.

 Here is our equation of motion at time thit:

 Solution in general is a bit tedious to derive…
 Infinite number of solutions!
 Hint: Specify the magnitude of Vinit, solve for its 

direction

Concrete Example: 
Target Practice

   2

2

1
inithitinithitinitinittarget tttt  gVpp
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 Choose Scalar launch speed, Vinit, and Let:

 Where:

Concrete Example: Target 
Practice

 sin,cossin,coscos initinitinitinit VVVV
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 If Radicand in tan Equation is Negative:
 No solution. Vinit is too small to hit the target

 Otherwise:
 One solution if radicand == 0

 If radicand > 0, TWO possible launch angles, 
 Smallest  yields earlier time of arrival, thit

 Largest  yields later time of arrival, thit

Concrete Example: 
Target Practice

solution! no then ,0
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1
2 if ,,
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969.31

Target Practice –
A Few Examples

Vinit = 25 m/s
Value of Radicand of tan equation:
Launch angle : 19.4 deg or 70.6 deg
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Target Practice –
A Few Examples
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Vinit = 20 m/s
Value of Radicand of tan equation:
Launch angle : 39.4 deg or 50.6 deg
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Target Practice –
A Few Examples
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Vinit = 19.85 m/s
Value of Radicand of tan equation:
Launch angle : 42.4 deg or 47.6 deg (note convergence)
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Target Practice – A Few 
Examples

-290.4

Vinit = 19 m/s
Value of Radicand of tan equation:
Launch angle : No solution! Vinit too small to reach target!
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Target Practice – A Few 
Examples

2063

Vinit = 18 m/s
Value of Radicand of tan equation:
Launch angle : -6.38 deg or 60.4 deg
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Target Practice –
A Few Examples

668

Vinit = 30 m/s
Value of Radicand of tan equation:
Launch angle : 39.1 deg or 75.2 deg
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Stop Here



Real-time Game Physics

Practical Implementation: 
Numerical Simulation
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What is Numerical Simulation?

 Equations Presented Above
 They are “closed-form”
 Valid and exact for constant applied force
 Do not require time-stepping

 Just determine current game time, t, using system timer

 e.g., t = QueryPerformanceCounter / 

QueryPerformanceFrequency or equivalent on Microsoft®

Windows® platforms

 Plug t and tinit into the equations

 Equations produce identical, repeatable, stable results, 

for any time, t, regardless of CPU speed and frame rate
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What is Numerical Simulation?

 The above sounds perfect

 Why not use those equations always?

 Constant forces aren’t very interesting

 Simple projectiles only

 Closed-form solutions rarely exist for interesting (non-
constant) forces

 We need a way to deal when there is no closed-form 
solution…

Numerical Simulation represents a series of techniques for 
incrementally solving the equations of motion when forces applied to an 
object are not constant, or when otherwise there is no closed-form 
solution
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Finite Difference Methods

 What are They?

 The most common family of numerical techniques 
for rigid-body dynamics simulation

 Incremental “solution” to equations of motion

 Derived using truncated Taylor Series expansions

 See text for a more detailed introduction

 “Numerical Integrator”

 This is what we generically call a finite difference 
equation that generates a “solution” over time
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Finite Difference Methods

 The Explicit Euler Integrator:

 Properties of object are stored in a state vector, S

 Use the above integrator equation to incrementally update S

over time as game progresses

 Must keep track of prior value of S in order to compute the new

 For Explicit Euler, one choice of state and state derivative for 
particle:

     




derivative state

stateprior state new

t
dt

d
tttt SSS 

pVS ,m VFS ,dtd
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Explicit Euler Integration

F=Weight = mg Vinitpinit

Vinit = 30 m/s
Launch angle, : 75.2 deg (slow arrival)
Launch angle, : 0 deg (motion in world xz plane)
Mass of projectile, m: 2.5 kg

Target at <50, 0, 20> meters

tinit

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

mVinit

S = <mVinit, pinit > dS/dt = <mg,Vinit>
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t = .01 st = .1 s

Explicit Euler Integration
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A Tangent: Truncation Error

 The previous slide highlights values in the numerical solution 
that are different from the exact, closed-form solution

 This difference between the exact solution and the numerical 
solution is primarily truncation error

 Truncation error is equal and opposite to the value of terms that 
were removed from the Taylor Series expansion to produce the 
finite difference equation

 Truncation error, left unchecked, can accumulate to 
cause simulation to become unstable

 This ultimately produces floating point overflow

 Unstable simulations behave unpredictably
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A Tangent: Truncation Error

 Controlling Truncation Error

 Under certain circumstances, truncation error can 
become zero, e.g., the finite difference equation 
produces the exact, correct result

 For example, when zero force is applied

 More often in practice, truncation error is nonzero

 Approaches to control truncation error:

 Reduce time step, t

 Select a different numerical integrator

 See text for more background information and 
references
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Explicit Euler Integration –
Truncation Error





























































































































































0005.0

0.0

0.0

               

2895.2

0.0

0768.10

 - 

2900.2

0.0

0768.10

  0.01s)t(Error  Truncation

049.0

0.0

0.0

               

8510.4

0.0

1536.10

 - 

9000.4

0.0

1536.10

    0.1s)t(Error  Truncation

1962.0

0.0

0.0

               

6038.7

0.0

5362.11

 - 

800.7

0.0

5362.11

    0.2s)t(Error  Truncation

exactnumerical

exactnumerical

exactnumerical

Truncation ErrorLets Look at Truncation Error (position only)



39

Explicit Euler Integration –
Truncation Error

(1/t) * Truncation Error is a linear (first-
order) function of t: explicit Euler 

Integration is First-Order-Accurate in 
time

This accuracy is denoted by “O(t)”
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Explicit Euler Integration -
Computing Solution Over Time
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Explicit Euler

 The solution proceeds step-by-step, each 
time integrating from the prior state

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04

5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08

5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

M M M M M
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)
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Finite Difference Methods

 The Verlet Integrator:

 Must store state at two prior time steps, S(t) and S(t-t)

 Uses second derivative of state instead of the first

 Valid for constant time step only (as shown above)

 For Verlet, choice of state and state derivative for a particle:

pS  aFS  mdtd /
22

       




derivative state
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2 stateprior 1 stateprior state new
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 t

dt
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tttttt SSSS
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Verlet Integration

a=<0,0,-g>p

S = <p > d2S/dt2 = <a>

)(   ,)(
2

2

initinit t
dt

d
t SS

)(   ,)(
2

2

tt
dt

d
tt initinit  SS

 Since Verlet requires two prior values of state, S(t) and S(t-t), 

you must use some method other than Verlet to produce the 
first numerical state after start of simulation, S(tinit+t)

 Solution: Use explicit Euler integration to produce S(tinit+t), 

then Verlet for all subsequent time steps

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)
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 The solution proceeds step-by-step, each time integrating from the 
prior two states

 For constant acceleration, Verlet integration produces results identical
to those of explicit Euler

 But, results are different when non-constant forces are applied

 Verlet Integration tends to be more stable than explicit Euler for 
generalized forces

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

5.40 13.07 0.00 13.21 0.00 0.00 -9.81

5.60 14.61 0.00 18.22 0.00 0.00 -9.81

5.80 16.14 0.00 22.85 0.00 0.00 -9.81

6.00 17.68 0.00 27.08 0.00 0.00 -9.81

M M M

10.40 51.48 0.00 20.87 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)

Verlet Integration

S(t+t)

S(t)

S(t-t)
)(

2

2

t
dt

d
S



Real-time Game Physics

Generalized Rigid Bodies
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Generalized Rigid Bodies

 Key Differences from Particles
 Not necessarily spherical in shape

 Position, p, represents object’s center-of-mass location

 Surface may not be perfectly smooth
 Friction forces may be present

 Experience rotational motion in addition to translational 
(position only) motion

Center of Mass

worldX

worldZ

objectX

objectZ
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Generalized Rigid Bodies –
Simulation

 Angular Kinematics
 Orientation, 3x3 matrix R or quaternion, q
 Angular velocity, w
 As with translational/particle kinematics, all properties are 

measured in world coordinates

 Additional Object Properties
 Inertia tensor, J

 Center-of-mass

 Additional State Properties for Simulation
 Orientation
 Angular momentum, L=Jw

 Corresponding state derivatives
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Generalized Rigid Bodies -
Simulation

 Torque
 Analogous to a force

 Causes rotational acceleration
 Cause a change in angular momentum

 Torque is the result of a force (friction, collision response, 
spring, damper, etc.)

r
F

P

= Center-of-Mass

 = r F
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Generalized Rigid Bodies –
Numerical Simulation

 Using Finite Difference Integrators
 Translational components of state <mV, p> are the same

 S and dS/dt are expanded to include angular momentum and 
orientation, and their derivatives

 Be careful about coordinate system representation for J, R, etc.

 Otherwise, integration step is identical to the translation only case

 Additional Post-integration Steps
 Adjust orientation for consistency

 Adjust updated R to ensure it is orthogonal

 Normalize q

 Update angular velocity, w

 See text for more details
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Collision Response

 Why?
 Performed to keep objects from interpenetrating

 To ensure behavior similar to real-world objects

 Two Basic Approaches
 Approach 1: Instantaneous change of velocity at time of 

collision
 Benefits:

 Visually the objects never interpenetrate

 Result is generated via closed-form equations, and is perfectly 
stable

 Difficulties:
 Precise detection of time and location of collision can be 

prohibitively expensive (frame rate killer)

 Logic to manage state is complex
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Collision Response

 Two Basic Approaches (continued)
 Approach 2: Gradual change of velocity and position over 

time, following collision
 Benefits

 Does not require precise detection of time and location of collision

 State management is easy

 Potential to be more realistic, if meshes are adjusted to deform 
according to predicted interpenetration

 Difficulties
 Object interpenetration is likely, and parameters must be tweaked 

to manage this

 Simulation can be subject to numerical instabilities, often requiring 
the use of implicit finite difference methods
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Final Comments

 Instantaneous Collision Response
 Classical approach: Impulse-momentum equations

 See text for full details

 Gradual Collision Response
 Classical approach: Penalty force methods

 Resolve interpenetration over the course of a few integration 
steps

 Penalty forces can wreak havoc on numerical integration
 Instabilities galore

 Implicit finite difference equations can handle it
 But more difficult to code

 Geometric approach: Ignore physical response equations
 Enforce purely geometric constraints once interpenetration has 

occurred
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Fixed Time Step Simulation

 Numerical simulation works best if the simulator uses 
a fixed time step
 e.g., choose t = 0.02 seconds for physics updates of 1/50 

second

 Do not change t to correspond to frame rate

 Instead, write an inner loop that allows physics simulation to 
catch up with frame rate, or wait for frames to catch up with 
physics before continuing

 This is easy to do

 Read the text for more details and references!
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Final Comments

 Simple Games
 Closed-form particle equations may be all you 

need

 Numerical particle simulation adds flexibility 
without much coding effort

 Collision detection is probably the most difficult 
part of this

 Generalized Rigid Body Simulation
 Includes rotational effects and interesting (non-

constant) forces

 See text for details on how to get started
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Final Comments

 Full-Up Simulation
 The text and this presentation just barely touch the surface

 Additional considerations
 Multiple simultaneous collision points

 Articulating rigid body chains, with joints

 Friction, rolling friction, friction during collision

 Mechanically applied forces (motors, etc.)

 Resting contact/stacking

 Breakable objects

 Soft bodies

 Smoke, clouds, and other gases

 Water, oil, and other fluids


