
Chapter 4.3
Real-time Game Physics

Outline

 Introduction
 Motivation for including physics in games
 Practical development team decisions

 Particle Physics
 Particle Kinematics
 Closed-form Equations of Motion

 Numerical Simulation
 Finite Difference Methods
 Explicit Euler Integration
 Verlet Integration

 Brief Overview of Generalized Rigid Bodies
 Brief Overview of Collision Response
 Final Comments

Real-time Game Physics

Introduction

4

Why Physics?

 The Human Experience
 Real-world motions are physically-based

 Physics can make simulated game worlds appear
more natural

 Makes sense to strive for physically-realistic
motion for some types of games

 Emergent Behavior
 Physics simulation can enable a richer gaming

experience

5

Why Physics?

 Developer/Publisher Cost Savings

 Classic approaches to creating realistic motion:

 Artist-created keyframe animations

 Motion capture

 Both are labor intensive and expensive

 Physics simulation:

 Motion generated by algorithm

 Theoretically requires only minimal artist input

 Potential to substantially reduce content development
cost

6

High-level Decisions

 Physics in Digital Content Creation Software:
 Many DCC modeling tools provide physics
 Export physics-engine-generated animation as

keyframe data
 Enables incorporation of physics into game

engines that do not support real-time physics
 Straightforward update of existing asset creation

pipelines
 Does not provide player with the same emergent-

behavior-rich game experience
 Does not provide full cost savings to

developer/publisher

7

High-level Decisions

 Real-time Physics in Game at Runtime:
 Enables the emergent behavior that provides

player a richer game experience
 Potential to provide full cost savings to

developer/publisher
 May require significant upgrade of game engine
 May require significant update of asset creation

pipelines
 May require special training for modelers,

animators, and level designers
 Licensing an existing engine may significantly

increase third party middleware costs

8

High-level Decisions

 License vs. Build Physics Engine:

 License middleware physics engine

 Complete solution from day 1

 Proven, robust code base (in theory)

 Most offer some integration with DCC tools

 Features are always a tradeoff

9

High-level Decisions

 License vs. Build Physics Engine:

 Build physics engine in-house

 Choose only the features you need

 Opportunity for more game-specific optimizations

 Greater opportunity to innovate

 Cost can be easily be much greater

 No asset pipeline at start of development

Real-time Game Physics

The Beginning: Particle Physics

11

The Beginning: Particle
Physics

 What is a Particle?

 A sphere of finite radius with a perfectly smooth,
frictionless surface

 Experiences no rotational motion

 Particle Kinematics

 Defines the basic properties of particle motion

 Position, Velocity, Acceleration

12

 Location of Particle in World Space

 SI Units: meters (m)

 Changes over time when object moves

p(
t)

p(t+
t)

Particle Kinematics - Position

zyx ppp ,,p

13

Particle Kinematics - Velocity
and Acceleration

 Velocity (SI units: m/s)

 First time derivative of position:

 Acceleration (SI units: m/s2)

 First time derivative of velocity

 Second time derivative of position

)(
)()(

lim)(
0

t
dt

d

t

ttt
t

t
p

pp
V

)()()(
2

2

t
dt

d
t

dt

d
t pVa

14

Newton’s 2nd Law of Motion

 Paraphrased – “An object’s change in velocity
is proportional to an applied force”

 The Classic Equation:

 m = mass (SI units: kilograms, kg)

 F(t) = force (SI units: Newtons)

 tmt aF

15

What is Physics Simulation?

 The Cycle of Motion:

 Force, F(t), causes acceleration
 Acceleration, a(t), causes a change in velocity
 Velocity, V(t) causes a change in position

 Physics Simulation:

 Solving variations of the above equations over
time to emulate the cycle of motion

16

Example: 3D Projectile Motion

 Constant Force
 Weight of the projectile, W = mg

 g is constant acceleration due to gravity

 Closed-form Projectile Equations of Motion:

 These closed-form equations are valid, and
exact*, for any time, t, in seconds, greater than or
equal to tinit

 initinit ttt gVV)(

 2
2

1
)(initinitinitinit ttttt gVpp

17

Example: 3D Projectile Motion

 Initial Value Problem
 Simulation begins at time tinit

 The initial velocity, Vinit and position, pinit, at time
tinit, are known

 Solve for later values at any future time, t, based
on these initial values

 On Earth:
 If we choose positive Z to be straight up (away

from center of Earth), gEarth = 9.81 m/s2:

2m/s 81.9,0.0,0.0ˆ kgEarthEarthg

18

Concrete Example: Target
Practice

V
in

it

F = weight = mg
Target

Projectile Launch
Position, pinit

19

 Choose Vinit to Hit a Stationary Target
 ptarget is the stationary target location

 We would like to choose the initial velocity, Vinit,
required to hit the target at some future time, thit.

 Here is our equation of motion at time thit:

 Solution in general is a bit tedious to derive…
 Infinite number of solutions!
 Hint: Specify the magnitude of Vinit, solve for its

direction

Concrete Example:
Target Practice

 2

2

1
inithitinithitinitinittarget tttt gVpp

20

 Choose Scalar launch speed, Vinit, and Let:

 Where:

Concrete Example: Target
Practice

 sin,cossin,coscos initinitinitinit VVVV

sincos

2

1
2

tan

sin ; cos

,,,,

2
,,

22

2

2

,,

2

,,

,,

2

,,

2

,,

,,

xinityinitxtargetytarget

init

zinitztarget

initinit

yinitytargetxinitxtarget

yinitytarget

yinitytargetxinitxtarget

xinitxtarget

pppp
A

A

V

g

pp
V

A
g

V

A
gAA

pppp

pp

pppp

pp

21

 If Radicand in tan Equation is Negative:
 No solution. Vinit is too small to hit the target

 Otherwise:
 One solution if radicand == 0

 If radicand > 0, TWO possible launch angles,
 Smallest yields earlier time of arrival, thit

 Largest yields later time of arrival, thit

Concrete Example:
Target Practice

solution! no then ,0
2

1
2 if ,,

22

2

 zinitztarget

initinit

pp
V

A
g

V

A
gA

22

969.31

Target Practice –
A Few Examples

Vinit = 25 m/s
Value of Radicand of tan equation:
Launch angle : 19.4 deg or 70.6 deg

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory 1 - High

Angle, Slow Arrival

Trajectory 2 - Low

Angle, Fast Arrival

23

Target Practice –
A Few Examples

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory 1 - High

Angle, Slow Arrival

Trajectory 2 - Low

Angle, Fast Arrival

60.2

Vinit = 20 m/s
Value of Radicand of tan equation:
Launch angle : 39.4 deg or 50.6 deg

24

Target Practice –
A Few Examples

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory 1 - High

Angle, Slow Arrival

Trajectory 2 - Low

Angle, Fast Arrival

13.2

Vinit = 19.85 m/s
Value of Radicand of tan equation:
Launch angle : 42.4 deg or 47.6 deg (note convergence)

25

Target Practice – A Few
Examples

-290.4

Vinit = 19 m/s
Value of Radicand of tan equation:
Launch angle : No solution! Vinit too small to reach target!

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory with farthest

reach barely

undershoots target

26

Target Practice – A Few
Examples

2063

Vinit = 18 m/s
Value of Radicand of tan equation:
Launch angle : -6.38 deg or 60.4 deg

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory 1 - High

Angle, Slow Arrival

Trajectory 2 - Low

Angle, Fast Arrival

27

Target Practice –
A Few Examples

668

Vinit = 30 m/s
Value of Radicand of tan equation:
Launch angle : 39.1 deg or 75.2 deg

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e
rt

ic
a
l

P
o

s
it

io
n

 (
m

) Projectile Launch

Position

Target Position

Trajectory 1 - High

Angle, Slow Arrival

Trajectory 2 - Low

Angle, Fast Arrival

28

Stop Here

Real-time Game Physics

Practical Implementation:
Numerical Simulation

30

What is Numerical Simulation?

 Equations Presented Above
 They are “closed-form”
 Valid and exact for constant applied force
 Do not require time-stepping

 Just determine current game time, t, using system timer

 e.g., t = QueryPerformanceCounter /

QueryPerformanceFrequency or equivalent on Microsoft®

Windows® platforms

 Plug t and tinit into the equations

 Equations produce identical, repeatable, stable results,

for any time, t, regardless of CPU speed and frame rate

31

What is Numerical Simulation?

 The above sounds perfect

 Why not use those equations always?

 Constant forces aren’t very interesting

 Simple projectiles only

 Closed-form solutions rarely exist for interesting (non-
constant) forces

 We need a way to deal when there is no closed-form
solution…

Numerical Simulation represents a series of techniques for
incrementally solving the equations of motion when forces applied to an
object are not constant, or when otherwise there is no closed-form
solution

32

Finite Difference Methods

 What are They?

 The most common family of numerical techniques
for rigid-body dynamics simulation

 Incremental “solution” to equations of motion

 Derived using truncated Taylor Series expansions

 See text for a more detailed introduction

 “Numerical Integrator”

 This is what we generically call a finite difference
equation that generates a “solution” over time

33

Finite Difference Methods

 The Explicit Euler Integrator:

 Properties of object are stored in a state vector, S

 Use the above integrator equation to incrementally update S

over time as game progresses

 Must keep track of prior value of S in order to compute the new

 For Explicit Euler, one choice of state and state derivative for
particle:

derivative state

stateprior state new

t
dt

d
tttt SSS

pVS ,m VFS ,dtd

34

Explicit Euler Integration

F=Weight = mg Vinitpinit

Vinit = 30 m/s
Launch angle, : 75.2 deg (slow arrival)
Launch angle, : 0 deg (motion in world xz plane)
Mass of projectile, m: 2.5 kg

Target at <50, 0, 20> meters

tinit

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

mVinit

S = <mVinit, pinit > dS/dt = <mg,Vinit>

35

t = .01 st = .1 s

Explicit Euler Integration

2900.2

0.0

0768.10

2549.72

0.0

2025.19

9000.4

0.0

7681.10

0476.72

0.0

2025.19

8000.7

0.0

5362.11

5951.67

0.0

2025.19

0.29

0.0

68.7

53.24

0.0

0.0

0.2

0.0

0.10

5.72

0.0

2.19

)()()(tt
dt

d
tttt SSS

t = .2 s

2895.2

0.0

0768.10

2549.72

0.0

2.19

8510.4

0.0

1536.10

0476.72

0.0

2.19

6038.7

0.0

5362.11

5951.67

0.0

2.19

 Solution form-Closed Exact,

36

A Tangent: Truncation Error

 The previous slide highlights values in the numerical solution
that are different from the exact, closed-form solution

 This difference between the exact solution and the numerical
solution is primarily truncation error

 Truncation error is equal and opposite to the value of terms that
were removed from the Taylor Series expansion to produce the
finite difference equation

 Truncation error, left unchecked, can accumulate to
cause simulation to become unstable

 This ultimately produces floating point overflow

 Unstable simulations behave unpredictably

37

A Tangent: Truncation Error

 Controlling Truncation Error

 Under certain circumstances, truncation error can
become zero, e.g., the finite difference equation
produces the exact, correct result

 For example, when zero force is applied

 More often in practice, truncation error is nonzero

 Approaches to control truncation error:

 Reduce time step, t

 Select a different numerical integrator

 See text for more background information and
references

38

Explicit Euler Integration –
Truncation Error

0005.0

0.0

0.0

2895.2

0.0

0768.10

 -

2900.2

0.0

0768.10

 0.01s)t(Error Truncation

049.0

0.0

0.0

8510.4

0.0

1536.10

 -

9000.4

0.0

1536.10

 0.1s)t(Error Truncation

1962.0

0.0

0.0

6038.7

0.0

5362.11

 -

800.7

0.0

5362.11

 0.2s)t(Error Truncation

exactnumerical

exactnumerical

exactnumerical

Truncation ErrorLets Look at Truncation Error (position only)

39

Explicit Euler Integration –
Truncation Error

(1/t) * Truncation Error is a linear (first-
order) function of t: explicit Euler

Integration is First-Order-Accurate in
time

This accuracy is denoted by “O(t)”

40

Explicit Euler Integration -
Computing Solution Over Time

0.00

10.00

20.00

30.00

40.00

50.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

V
e

rt
ic

a
l
P

o
s

it
io

n
 (

m
) Projectile Launch

Position
Target Position

Closed-Form

Explicit Euler

 The solution proceeds step-by-step, each
time integrating from the prior state

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04

5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08

5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

M M M M M
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

41

Finite Difference Methods

 The Verlet Integrator:

 Must store state at two prior time steps, S(t) and S(t-t)

 Uses second derivative of state instead of the first

 Valid for constant time step only (as shown above)

 For Verlet, choice of state and state derivative for a particle:

pS aFS mdtd /
22

derivative state

2

2
2

2 stateprior 1 stateprior state new

)(2

 t

dt

d
tttttt SSSS

42

Verlet Integration

a=<0,0,-g>p

S = <p > d2S/dt2 = <a>

)(,)(
2

2

initinit t
dt

d
t SS

)(,)(
2

2

tt
dt

d
tt initinit SS

 Since Verlet requires two prior values of state, S(t) and S(t-t),

you must use some method other than Verlet to produce the
first numerical state after start of simulation, S(tinit+t)

 Solution: Use explicit Euler integration to produce S(tinit+t),

then Verlet for all subsequent time steps

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)

43

 The solution proceeds step-by-step, each time integrating from the
prior two states

 For constant acceleration, Verlet integration produces results identical
to those of explicit Euler

 But, results are different when non-constant forces are applied

 Verlet Integration tends to be more stable than explicit Euler for
generalized forces

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

5.40 13.07 0.00 13.21 0.00 0.00 -9.81

5.60 14.61 0.00 18.22 0.00 0.00 -9.81

5.80 16.14 0.00 22.85 0.00 0.00 -9.81

6.00 17.68 0.00 27.08 0.00 0.00 -9.81

M M M

10.40 51.48 0.00 20.87 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)

Verlet Integration

S(t+t)

S(t)

S(t-t)
)(

2

2

t
dt

d
S

Real-time Game Physics

Generalized Rigid Bodies

45

Generalized Rigid Bodies

 Key Differences from Particles
 Not necessarily spherical in shape

 Position, p, represents object’s center-of-mass location

 Surface may not be perfectly smooth
 Friction forces may be present

 Experience rotational motion in addition to translational
(position only) motion

Center of Mass

worldX

worldZ

objectX

objectZ

46

Generalized Rigid Bodies –
Simulation

 Angular Kinematics
 Orientation, 3x3 matrix R or quaternion, q
 Angular velocity, w
 As with translational/particle kinematics, all properties are

measured in world coordinates

 Additional Object Properties
 Inertia tensor, J

 Center-of-mass

 Additional State Properties for Simulation
 Orientation
 Angular momentum, L=Jw

 Corresponding state derivatives

47

Generalized Rigid Bodies -
Simulation

 Torque
 Analogous to a force

 Causes rotational acceleration
 Cause a change in angular momentum

 Torque is the result of a force (friction, collision response,
spring, damper, etc.)

r
F

P

= Center-of-Mass

 = r F

48

Generalized Rigid Bodies –
Numerical Simulation

 Using Finite Difference Integrators
 Translational components of state <mV, p> are the same

 S and dS/dt are expanded to include angular momentum and
orientation, and their derivatives

 Be careful about coordinate system representation for J, R, etc.

 Otherwise, integration step is identical to the translation only case

 Additional Post-integration Steps
 Adjust orientation for consistency

 Adjust updated R to ensure it is orthogonal

 Normalize q

 Update angular velocity, w

 See text for more details

49

Collision Response

 Why?
 Performed to keep objects from interpenetrating

 To ensure behavior similar to real-world objects

 Two Basic Approaches
 Approach 1: Instantaneous change of velocity at time of

collision
 Benefits:

 Visually the objects never interpenetrate

 Result is generated via closed-form equations, and is perfectly
stable

 Difficulties:
 Precise detection of time and location of collision can be

prohibitively expensive (frame rate killer)

 Logic to manage state is complex

50

Collision Response

 Two Basic Approaches (continued)
 Approach 2: Gradual change of velocity and position over

time, following collision
 Benefits

 Does not require precise detection of time and location of collision

 State management is easy

 Potential to be more realistic, if meshes are adjusted to deform
according to predicted interpenetration

 Difficulties
 Object interpenetration is likely, and parameters must be tweaked

to manage this

 Simulation can be subject to numerical instabilities, often requiring
the use of implicit finite difference methods

51

Final Comments

 Instantaneous Collision Response
 Classical approach: Impulse-momentum equations

 See text for full details

 Gradual Collision Response
 Classical approach: Penalty force methods

 Resolve interpenetration over the course of a few integration
steps

 Penalty forces can wreak havoc on numerical integration
 Instabilities galore

 Implicit finite difference equations can handle it
 But more difficult to code

 Geometric approach: Ignore physical response equations
 Enforce purely geometric constraints once interpenetration has

occurred

52

Fixed Time Step Simulation

 Numerical simulation works best if the simulator uses
a fixed time step
 e.g., choose t = 0.02 seconds for physics updates of 1/50

second

 Do not change t to correspond to frame rate

 Instead, write an inner loop that allows physics simulation to
catch up with frame rate, or wait for frames to catch up with
physics before continuing

 This is easy to do

 Read the text for more details and references!

53

Final Comments

 Simple Games
 Closed-form particle equations may be all you

need

 Numerical particle simulation adds flexibility
without much coding effort

 Collision detection is probably the most difficult
part of this

 Generalized Rigid Body Simulation
 Includes rotational effects and interesting (non-

constant) forces

 See text for details on how to get started

54

Final Comments

 Full-Up Simulation
 The text and this presentation just barely touch the surface

 Additional considerations
 Multiple simultaneous collision points

 Articulating rigid body chains, with joints

 Friction, rolling friction, friction during collision

 Mechanically applied forces (motors, etc.)

 Resting contact/stacking

 Breakable objects

 Soft bodies

 Smoke, clouds, and other gases

 Water, oil, and other fluids

