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Real-time Game Physics

Introduction
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Why Physics?

 The Human Experience
 Real-world motions are physically-based

 Physics can make simulated game worlds appear 
more natural

 Makes sense to strive for physically-realistic 
motion for some types of games

 Emergent Behavior
 Physics simulation can enable a richer gaming 

experience
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Why Physics?

 Developer/Publisher Cost Savings

 Classic approaches to creating realistic motion:

 Artist-created keyframe animations

 Motion capture

 Both are labor intensive and expensive

 Physics simulation:

 Motion generated by algorithm

 Theoretically requires only minimal artist input

 Potential to substantially reduce content development 
cost
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High-level Decisions

 Physics in Digital Content Creation Software:
 Many DCC modeling tools provide physics
 Export physics-engine-generated animation as 

keyframe data
 Enables incorporation of physics into game 

engines that do not support real-time physics
 Straightforward update of existing asset creation 

pipelines
 Does not provide player with the same emergent-

behavior-rich game experience
 Does not provide full cost savings to 

developer/publisher
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High-level Decisions

 Real-time Physics in Game at Runtime:
 Enables the emergent behavior that provides 

player a richer game experience
 Potential to provide full cost savings to 

developer/publisher
 May require significant upgrade of game engine
 May require significant update of asset creation 

pipelines
 May require special training for modelers, 

animators, and level designers
 Licensing an existing engine may significantly 

increase third party middleware costs
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High-level Decisions

 License vs. Build Physics Engine:

 License middleware physics engine

 Complete solution from day 1

 Proven, robust code base (in theory)

 Most offer some integration with DCC tools

 Features are always a tradeoff
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High-level Decisions

 License vs. Build Physics Engine:

 Build physics engine in-house

 Choose only the features you need

 Opportunity for more game-specific optimizations

 Greater opportunity to innovate

 Cost can be easily be much greater

 No asset pipeline at start of development



Real-time Game Physics

The Beginning: Particle Physics
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The Beginning: Particle 
Physics

 What is a Particle?

 A sphere of finite radius with a perfectly smooth, 
frictionless surface

 Experiences no rotational motion

 Particle Kinematics

 Defines the basic properties of particle motion

 Position, Velocity, Acceleration
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 Location of Particle in World Space

 SI Units: meters (m)

 Changes over time when object moves

p(
t)

p(t+
t)

Particle Kinematics - Position

zyx ppp ,,p
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Particle Kinematics - Velocity 
and Acceleration

 Velocity (SI units: m/s)

 First time derivative of position:

 Acceleration (SI units: m/s2)

 First time derivative of velocity

 Second time derivative of position
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Newton’s 2nd Law of Motion

 Paraphrased – “An object’s change in velocity 
is proportional to an applied force”

 The Classic Equation:

 m = mass (SI units: kilograms, kg)

 F(t) = force (SI units: Newtons)

   tmt aF 
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What is Physics Simulation?

 The Cycle of Motion:

 Force, F(t), causes acceleration
 Acceleration, a(t), causes a change in velocity
 Velocity, V(t) causes a change in position

 Physics Simulation:

 Solving variations of the above equations over 
time to emulate the cycle of motion
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Example: 3D Projectile Motion

 Constant Force
 Weight of the projectile, W = mg

 g is constant acceleration due to gravity

 Closed-form Projectile Equations of Motion:

 These closed-form equations are valid, and 
exact*, for any time, t, in seconds, greater than or 
equal to tinit

 initinit ttt  gVV )(

   2
2

1
)( initinitinitinit ttttt  gVpp
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Example: 3D Projectile Motion

 Initial Value Problem
 Simulation begins at time tinit

 The initial velocity, Vinit and position, pinit, at time 
tinit, are known

 Solve for later values at any future time, t, based 
on these initial values

 On Earth:
 If we choose positive Z to be straight up (away 

from center of Earth), gEarth = 9.81 m/s2:

2m/s 81.9,0.0,0.0ˆ  kgEarthEarthg
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Concrete Example: Target 
Practice

V
in

it

F = weight = mg
Target

Projectile Launch
Position, pinit
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 Choose Vinit to Hit a Stationary Target
 ptarget is the stationary target location

 We would like to choose the initial velocity, Vinit, 
required to hit the target at some future time, thit.

 Here is our equation of motion at time thit:

 Solution in general is a bit tedious to derive…
 Infinite number of solutions!
 Hint: Specify the magnitude of Vinit, solve for its 

direction

Concrete Example: 
Target Practice

   2

2

1
inithitinithitinitinittarget tttt  gVpp
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 Choose Scalar launch speed, Vinit, and Let:

 Where:

Concrete Example: Target 
Practice

 sin,cossin,coscos initinitinitinit VVVV
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 If Radicand in tan Equation is Negative:
 No solution. Vinit is too small to hit the target

 Otherwise:
 One solution if radicand == 0

 If radicand > 0, TWO possible launch angles, 
 Smallest  yields earlier time of arrival, thit

 Largest  yields later time of arrival, thit

Concrete Example: 
Target Practice

solution! no then ,0
2

1
2 if ,,
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969.31

Target Practice –
A Few Examples

Vinit = 25 m/s
Value of Radicand of tan equation:
Launch angle : 19.4 deg or 70.6 deg
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Target Practice –
A Few Examples
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60.2

Vinit = 20 m/s
Value of Radicand of tan equation:
Launch angle : 39.4 deg or 50.6 deg
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Target Practice –
A Few Examples
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13.2

Vinit = 19.85 m/s
Value of Radicand of tan equation:
Launch angle : 42.4 deg or 47.6 deg (note convergence)
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Target Practice – A Few 
Examples

-290.4

Vinit = 19 m/s
Value of Radicand of tan equation:
Launch angle : No solution! Vinit too small to reach target!
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Target Practice – A Few 
Examples

2063

Vinit = 18 m/s
Value of Radicand of tan equation:
Launch angle : -6.38 deg or 60.4 deg
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Target Practice –
A Few Examples

668

Vinit = 30 m/s
Value of Radicand of tan equation:
Launch angle : 39.1 deg or 75.2 deg
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Stop Here



Real-time Game Physics

Practical Implementation: 
Numerical Simulation
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What is Numerical Simulation?

 Equations Presented Above
 They are “closed-form”
 Valid and exact for constant applied force
 Do not require time-stepping

 Just determine current game time, t, using system timer

 e.g., t = QueryPerformanceCounter / 

QueryPerformanceFrequency or equivalent on Microsoft®

Windows® platforms

 Plug t and tinit into the equations

 Equations produce identical, repeatable, stable results, 

for any time, t, regardless of CPU speed and frame rate
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What is Numerical Simulation?

 The above sounds perfect

 Why not use those equations always?

 Constant forces aren’t very interesting

 Simple projectiles only

 Closed-form solutions rarely exist for interesting (non-
constant) forces

 We need a way to deal when there is no closed-form 
solution…

Numerical Simulation represents a series of techniques for 
incrementally solving the equations of motion when forces applied to an 
object are not constant, or when otherwise there is no closed-form 
solution
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Finite Difference Methods

 What are They?

 The most common family of numerical techniques 
for rigid-body dynamics simulation

 Incremental “solution” to equations of motion

 Derived using truncated Taylor Series expansions

 See text for a more detailed introduction

 “Numerical Integrator”

 This is what we generically call a finite difference 
equation that generates a “solution” over time
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Finite Difference Methods

 The Explicit Euler Integrator:

 Properties of object are stored in a state vector, S

 Use the above integrator equation to incrementally update S

over time as game progresses

 Must keep track of prior value of S in order to compute the new

 For Explicit Euler, one choice of state and state derivative for 
particle:

     




derivative state

stateprior state new

t
dt

d
tttt SSS 

pVS ,m VFS ,dtd
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Explicit Euler Integration

F=Weight = mg Vinitpinit

Vinit = 30 m/s
Launch angle, : 75.2 deg (slow arrival)
Launch angle, : 0 deg (motion in world xz plane)
Mass of projectile, m: 2.5 kg

Target at <50, 0, 20> meters

tinit

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

mVinit

S = <mVinit, pinit > dS/dt = <mg,Vinit>
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t = .01 st = .1 s

Explicit Euler Integration
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A Tangent: Truncation Error

 The previous slide highlights values in the numerical solution 
that are different from the exact, closed-form solution

 This difference between the exact solution and the numerical 
solution is primarily truncation error

 Truncation error is equal and opposite to the value of terms that 
were removed from the Taylor Series expansion to produce the 
finite difference equation

 Truncation error, left unchecked, can accumulate to 
cause simulation to become unstable

 This ultimately produces floating point overflow

 Unstable simulations behave unpredictably
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A Tangent: Truncation Error

 Controlling Truncation Error

 Under certain circumstances, truncation error can 
become zero, e.g., the finite difference equation 
produces the exact, correct result

 For example, when zero force is applied

 More often in practice, truncation error is nonzero

 Approaches to control truncation error:

 Reduce time step, t

 Select a different numerical integrator

 See text for more background information and 
references
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Explicit Euler Integration –
Truncation Error
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Explicit Euler Integration –
Truncation Error

(1/t) * Truncation Error is a linear (first-
order) function of t: explicit Euler 

Integration is First-Order-Accurate in 
time

This accuracy is denoted by “O(t)”
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Explicit Euler Integration -
Computing Solution Over Time
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 The solution proceeds step-by-step, each 
time integrating from the prior state

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04

5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08

5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

M M M M M
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)
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Finite Difference Methods

 The Verlet Integrator:

 Must store state at two prior time steps, S(t) and S(t-t)

 Uses second derivative of state instead of the first

 Valid for constant time step only (as shown above)

 For Verlet, choice of state and state derivative for a particle:

pS  aFS  mdtd /
22

       




derivative state
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2 stateprior 1 stateprior state new

)(2 




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42

Verlet Integration

a=<0,0,-g>p

S = <p > d2S/dt2 = <a>

)(   ,)(
2

2

initinit t
dt

d
t SS

)(   ,)(
2

2

tt
dt

d
tt initinit  SS

 Since Verlet requires two prior values of state, S(t) and S(t-t), 

you must use some method other than Verlet to produce the 
first numerical state after start of simulation, S(tinit+t)

 Solution: Use explicit Euler integration to produce S(tinit+t), 

then Verlet for all subsequent time steps

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)
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 The solution proceeds step-by-step, each time integrating from the 
prior two states

 For constant acceleration, Verlet integration produces results identical
to those of explicit Euler

 But, results are different when non-constant forces are applied

 Verlet Integration tends to be more stable than explicit Euler for 
generalized forces

Time p x p y p z a x a y a z

5.00 10.00 0.00 2.00 0.00 0.00 -9.81

5.20 11.54 0.00 7.80 0.00 0.00 -9.81

5.40 13.07 0.00 13.21 0.00 0.00 -9.81

5.60 14.61 0.00 18.22 0.00 0.00 -9.81

5.80 16.14 0.00 22.85 0.00 0.00 -9.81

6.00 17.68 0.00 27.08 0.00 0.00 -9.81

M M M

10.40 51.48 0.00 20.87 0.00 0.00 -9.81

Position (m) Acceleration (m/s
2
)

Verlet Integration

S(t+t)

S(t)

S(t-t)
)(

2

2

t
dt

d
S
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Generalized Rigid Bodies

 Key Differences from Particles
 Not necessarily spherical in shape

 Position, p, represents object’s center-of-mass location

 Surface may not be perfectly smooth
 Friction forces may be present

 Experience rotational motion in addition to translational 
(position only) motion

Center of Mass

worldX

worldZ

objectX

objectZ
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Generalized Rigid Bodies –
Simulation

 Angular Kinematics
 Orientation, 3x3 matrix R or quaternion, q
 Angular velocity, w
 As with translational/particle kinematics, all properties are 

measured in world coordinates

 Additional Object Properties
 Inertia tensor, J

 Center-of-mass

 Additional State Properties for Simulation
 Orientation
 Angular momentum, L=Jw

 Corresponding state derivatives
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Generalized Rigid Bodies -
Simulation

 Torque
 Analogous to a force

 Causes rotational acceleration
 Cause a change in angular momentum

 Torque is the result of a force (friction, collision response, 
spring, damper, etc.)

r
F

P

= Center-of-Mass

 = r F
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Generalized Rigid Bodies –
Numerical Simulation

 Using Finite Difference Integrators
 Translational components of state <mV, p> are the same

 S and dS/dt are expanded to include angular momentum and 
orientation, and their derivatives

 Be careful about coordinate system representation for J, R, etc.

 Otherwise, integration step is identical to the translation only case

 Additional Post-integration Steps
 Adjust orientation for consistency

 Adjust updated R to ensure it is orthogonal

 Normalize q

 Update angular velocity, w

 See text for more details
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Collision Response

 Why?
 Performed to keep objects from interpenetrating

 To ensure behavior similar to real-world objects

 Two Basic Approaches
 Approach 1: Instantaneous change of velocity at time of 

collision
 Benefits:

 Visually the objects never interpenetrate

 Result is generated via closed-form equations, and is perfectly 
stable

 Difficulties:
 Precise detection of time and location of collision can be 

prohibitively expensive (frame rate killer)

 Logic to manage state is complex
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Collision Response

 Two Basic Approaches (continued)
 Approach 2: Gradual change of velocity and position over 

time, following collision
 Benefits

 Does not require precise detection of time and location of collision

 State management is easy

 Potential to be more realistic, if meshes are adjusted to deform 
according to predicted interpenetration

 Difficulties
 Object interpenetration is likely, and parameters must be tweaked 

to manage this

 Simulation can be subject to numerical instabilities, often requiring 
the use of implicit finite difference methods
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Final Comments

 Instantaneous Collision Response
 Classical approach: Impulse-momentum equations

 See text for full details

 Gradual Collision Response
 Classical approach: Penalty force methods

 Resolve interpenetration over the course of a few integration 
steps

 Penalty forces can wreak havoc on numerical integration
 Instabilities galore

 Implicit finite difference equations can handle it
 But more difficult to code

 Geometric approach: Ignore physical response equations
 Enforce purely geometric constraints once interpenetration has 

occurred
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Fixed Time Step Simulation

 Numerical simulation works best if the simulator uses 
a fixed time step
 e.g., choose t = 0.02 seconds for physics updates of 1/50 

second

 Do not change t to correspond to frame rate

 Instead, write an inner loop that allows physics simulation to 
catch up with frame rate, or wait for frames to catch up with 
physics before continuing

 This is easy to do

 Read the text for more details and references!
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Final Comments

 Simple Games
 Closed-form particle equations may be all you 

need

 Numerical particle simulation adds flexibility 
without much coding effort

 Collision detection is probably the most difficult 
part of this

 Generalized Rigid Body Simulation
 Includes rotational effects and interesting (non-

constant) forces

 See text for details on how to get started
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Final Comments

 Full-Up Simulation
 The text and this presentation just barely touch the surface

 Additional considerations
 Multiple simultaneous collision points

 Articulating rigid body chains, with joints

 Friction, rolling friction, friction during collision

 Mechanically applied forces (motors, etc.)

 Resting contact/stacking

 Breakable objects

 Soft bodies

 Smoke, clouds, and other gases

 Water, oil, and other fluids


