Chapter 4.3
Real-time Game Physics

Outline

Introduction

Motivation for including physics in games

Practical development team decisions
Particle Physics

Particle Kinematics

Closed-form Equations of Motion
Numerical Simulation

Finite Difference Methods

Explicit Euler Integration

Verlet Integration
Brief Overview of Generalized Rigid Bodies
Brief Overview of Collision Response
Final Comments

Real-time Game Physics

Introduction

Why Physics?

The Human Experience
Real-world motions are physically-based

Physics can make simulated game worlds appear
more natural

Makes sense to strive for physically-realistic
motion for some types of games

Emergent Behavior

Physics simulation can enable a richer gaming
experience

' Why Physics?

Developer/Publisher Cost Savings

Classic approaches to creating realistic motion:
Artist-created keyframe animations
Motion capture
Both are labor intensive and expensive

Physics simulation:
Motion generated by algorithm
Theoretically requires only minimal artist input

Potential to substantially reduce content development
cost

High-level Decisions

Physics in Digital Content Creation Software:
Many DCC modeling tools provide physics

Export physics-engine-generated animation as
keyframe data

Enables incorporation of physics into game
engines that do not support real-time physics

Straightforward update of existing asset creation
pipelines

Does not provide player with the same emergent-
behavior-rich game experience

Does not provide full cost savings to
developer/publisher

High-level Decisions

Real-time Physics in Game at Runtime:

Enables the emergent behavior that provides
player a richer game experience

Potential to provide full cost savings to
developer/publisher

May require significant upgrade of game engine
May require significant update of asset creation
pipelines

May require special training for modelers,
animators, and level designers

Licensing an existing engine may significantly
increase third party middleware costs

IR

High-level Decisions

(ERTE RE T R

License vs. Build Physics Engine:

License middleware physics engine
Complete solution from day 1
Proven, robust code base (in theory)
Most offer some integration with DCC tools
Features are always a tradeoff

| High-level Decisions

License vs. Build Physics Engine:
Build physics engine in-house
Choose only the features you need
Opportunity for more game-specific optimizations
Greater opportunity to innovate
Cost can be easily be much greater
No asset pipeline at start of development

Real-time Game Physics

The Beginning: Particle Physics

| The Beginning: Particle
| Physics

[LI Jil 1 T |

What is a Particle?

A sphere of finite radius with a perfectly smooth,
frictionless surface

Experiences no rotational motion

Particle Kinematics
Defines the basic properties of particle motion
Position, Velocity, Acceleration

11

/

| Particle Kinematics - Position

Location of Particle in World Space
SI Units: meters (m)

Y

(PP, P.)

Changes over time when object moves

12

VA| and Acceleration

| Particle Kinematics - Velocity

[LI Jil 1 T

Velocity (SI units: m/s)

First time derivative of position:

At—0 At

V(0) lim PEHAD RO _ d

Ep(t)

Acceleration (SI units: m/s?)

First time derivative of velocity
Second time derivative of position

a(r) = %V(r) -

d2

dt’

p(?)

13

Newton’s 2nd Law of Motion

Paraphrased — “An object’s change in velocity
is proportional to an applied force”

The Classic Equation:

F(¢)=mal(r)

m = mass (SI units: kilograms, kg)
F(¢) = force (SI units: Newtons)

14

| What is Physics Simulation?
T The Cycle of Motion:
Force, F(¢), causes acceleration

Acceleration, a(¢), causes a change in velocity
Velocity, V() causes a change in position

Physics Simulation:

Solving variations of the above equations over
time to emulate the cycle of motion

15

A| Example: 3D Projectile Motion

Constant Force

Weight of the projectile, W = mg

g is constant acceleration due to gravity
Closed-form Projectile Equations of Motion:

V(t) mlt T g(t tll’lll‘)

1
p(t) — pinzt + let (mzt)+ 2 g(t ZLmlt)

These closed-form equations are valid, and
exact*, for any time, ¢, in seconds, greater than or
equal to ¢,

init
16

A| Example: 3D Projectile Motion

Initial Value Problem
Simulation begins at time ¢

The initial velocity, V
t, ., are kKnown

Solve for later values at any future time, ¢, based
on these initial values

On Earth:

If we choose positive Z to be straight up (away
from center of Earth), g, = 9.81 m/s?:

init

and position, p, ., at time

init

8 s =~ pnk =(0.0,0.0,-9.81) m/s”

17

Concrete Example: Target
24| Practice

|
I
|

Z

Projectile Launch

18

| Concrete Example:
Target Practice

Choose V., . to Hit a Stationary Target

P..-c.: 1S the stationary target location

We would like to choose the initial velocity, V.,
required to hit the target at some future time, 7,

Here is our equation of motion at time ¢,

1
ptarget =P T Vinit (t pit — Linit)+ 5 g(t pit ™ Lini)2

Solution in general is a bit tedious to derive...
Infinite number of solutions!

Hint: Specify the magnitude of V
direction

solve for its

nit>

19

Concrete Example: Target
Practice

[il G A o Y B O

Choose Scalar launch speed, V., ., and Let:

Viie = <Vinit cos@cosg,V,, sindcosp,V,, sin ¢>

Where:

cosf =

2 2
A 1 A
Ai\/Az _2g[VJ {2g(VJ +ptarget,z _pinit,ZJ
init init

(ptarget,y + ptarget,x)_ (pinit 5% + pinit,x)
(cos @ +sin 6)

tan ¢ =

A=

| Concrete Example:
%25 Target Practice

If Radicand in tang Equation is Negative:
No solution. V, . is too small to hit the target

init

2 2
A 1 A
if| 42 =2 — + —D.. < 0, then no solution!
[g(Vlnlt j [2 g(Vlnlt j ptarget,z plnlt A]]

Otherwise:
One solution if radicand ==

If radicand > 0, TWO possible launch angles, ¢
Smallest ¢ yields earlier time of arrival, z,,,
Largest ¢ yields later time of arrival, ¢,

21

| Target Practice —
g; A Few Examples

V;nit = 25 m/s
Value of Radicand of tang equation: m
Launch angle ¢: 19.4 deg or 70.6 deg

45.00 -
40.00 -
_ 35.00 A ¢ Projectile Launch
E, 30.00 - Position -
o A Target Position
:‘g 25.00 A
g 20.00 - — Trajectory 1 - Hi_gh
© Angle, Slow Arrival
o .
'g 15.00 - —— Trajectory 2 - Low
S 10.00 - Angle, Fast Arrival
5.00 A
0.00 . T |
0.00 20.00 40.00 60.00

Horizontal Position (m)

22

| Target Practice —
g; A Few Examples

Viiw = 20 M/S
Value of Radicand of tang equation: m
Launch angle ¢: 39.4 deg or 50.6 deg

45.00 -
40.00 -
_ 35.00 A ¢ Projectile Launch
E, 30.00 - Position -
o A Target Position
:‘g 25.00 A
g 20.00 - — Trajectory 1 - Hi_gh
© Angle, Slow Arrival
o .
'g 15.00 - —— Trajectory 2 - Low
S 10.00 - Angle, Fast Arrival
5.00 A
0.00 . T |
0.00 20.00 40.00 60.00

Horizontal Position (m)

23

| Target Practice —
!a A Few Examples

V.. = 19.85 m/s
Value of Radicand of tang equation: m
Launch angle ¢: 42.4 deg or 47.6 deg (note convergence)

45.00 -

40.00 -
_ 35.00 A ¢ Projectile Launch
E, 30.00 - Position -
o A Target Position
:‘g 25.00 A
g 20.00 - — Trajectory 1 - Hi_gh
© Angle, Slow Arrival
o .
'g 15.00 - —— Trajectory 2 - Low
S 10.00 - Angle, Fast Arrival

5.00 A

0.00 . T |

0.00 20.00 40.00 60.00

Horizontal Position (m)

24

Target Practice — A Few
!z Examples

V;nit = 19 m/S
Value of Radicand of tang equation: m
Launch angle ¢: No solution! 7, . too small to reach target!

45.00 -
40.00 -
_ 35.00 A <& Projectile Launch
E Position
< 30.00
o "
= A Target Position
£ 25.00 A 9
o
2 20.00 -
i — Trajectory with farthest
£ 15.00 1 reach barely
> 10.00 - undershoots target
5.00 A
0.00 . . |
0.00 20.00 40.00 60.00

Horizontal Position (m)

25

| Target Practice — A Few
g; Examples

V;nit = 18 m/s
Value of Radicand of tang equation: m
Launch angle ¢: -6.38 deg or 60.4 deg

45.00 -
40.00 -
_ 35.00 A ¢ Projectile Launch
E, 30.00 - Position -
o A Target Position
:‘g 25.00 A
g 20.00 - — Trajectory 1 - Hi_gh
© Angle, Slow Arrival
o .
'g 15.00 - —— Trajectory 2 - Low
S 10.00 - Angle, Fast Arrival
5.00 A
0.00 . T £ |
0.00 20.00 40.00 60.00

Horizontal Position (m)

26

| Target Practice —
g; A Few Examples

V;nit = 30 m/s
Value of Radicand of tan¢g equation: [
Launch angle ¢: 39.1 deg or 75.2 deg

45.00 -
40.00 -
_ 35.00 A ¢ Projectile Launch
E, 30.00 - Position -
o A Target Position
:‘g 25.00 A
g 20.00 - — Trajectory 1 - Hi_gh
© Angle, Slow Arrival
o .
'g 15.00 - —— Trajectory 2 - Low
S 10.00 - Angle, Fast Arrival
5.00 A
0.00 . T |
0.00 20.00 40.00 60.00

Horizontal Position (m)

27

- Stop Here

Real-time Game Physics

Practical Implementation:
Numerical Simulation

2l What is Numerical Simulation?

Equations Presented Above
They are “closed-form”
Valid and exact for constant applied force
Do not require time-stepping
Just determine current game time, ¢, using system timer

e.g., t = QueryPerformanceCounter /
QueryPerformanceFrequency or equivalent on Microsoft®
Windows® platforms

Plug r and ¢, . into the equations

Equations produce identical, repeatable, stable results,
for any time, ¢, regardless of CPU speed and frame rate

30

ZA| What is Numerical Simulation?

The above sounds perfect

Why not use those equations always?
Constant forces aren't very interesting
Simple projectiles only
Closed-form solutions rarely exist for interesting (non-
constant) forces

We need a way to deal when there is no closed-form

solution...

Numerical Simulation represents a series of techniques for
incrementally solving the equations of motion when forces applied to an
object are not constant, or when otherwise there is no closed-form

solution

31

| Finite Difference Methods

What are They?

The most common family of numerical techniques
for rigid-body dynamics simulation

Incremental “solution” to equations of motion
Derived using truncated Taylor Series expansions
See text for a more detailed introduction

“"Numerical Integrator”

This is what we generically call a finite difference
equation that generates a “solution” over time

32

Finite Difference Methods

The Explicit Euler Integrator:

S(t+ar)= (1) +ar L)
—_— dt
new state prior state —
state derivative

Properties of object are stored in a state vector, S

Use the above integrator equation to incrementally update S
over time as game progresses

Must keep track of prior value of S in order to compute the new

For Explicit Euler, one choice of state and state derivative for
particle:

S =(mV,p) dS/dt=(F,V)

33

I T

/1.

.r:

Explicit Euler Integration

[LI Jil 1 T

V;nit = 30 m/S
Launch angle, ¢: 75.2 deg (slow arrival)

Launch angle, @: 0 deg (motion in world xz plane)

Mass of projectile, m: 2.5 kg
Target at <50, 0, 20> meters

Velocity (m/s)

Position (m) Linear Momentum (kg-m/s) Force (N)
. Py)2 mV mV, mV, F
10.00 0.00 2.00 19.20 0.00 72.50 0.00
AN AN
Y Y Y
Pinit mv F=Weight = mg

S =<mV s Pinic™

dS/dt = <mg,V

Explicit Euler Integration

= At=.2s At=.1s At =.01s
(19.2] 0.0 19202511 [19.2025]|| [19.2025]
0.0 0.0 0.0 0.0 0.0
d 72.5 —24.53 67.5951 72.0476 72.2549
S(t+ At) =S(t) + At —S(t) = + At = = =
dt 10.0 7.68 11.5362 10.7681 10.0768
0.0 0.0 0.0 0.0 0.0
| 2.0 | | 29.0
192] 19.2 | 19.2]
0.0 0.0 0.0
, 67.5951 72.0476 72.2549
Exact, Closed - form Solution |= = =
11.5362 10.1536 10.0768
0.0 0.0 0.0
7.6038 4.8510 2.2895

35

I KT AT

.rr

A Tangent: Truncation Error

The previous slide highlights values in the numerical solution
that are different from the exact, closed-form solution

This difference between the exact solution and the numerical
solution is primarily truncation error

Truncation error is equal and opposite to the value of terms that
were removed from the Taylor Series expansion to produce the
finite difference equation

Truncation error, left unchecked, can accumulate to
cause simulation to become unstable

This ultimately produces floating point overflow
Unstable simulations behave unpredictably

36

| A Tangent: Truncation Error

Controlling Truncation Error

Under certain circumstances, truncation error can
become zero, e.g., the finite difference equation
produces the exact, correct result

For example, when zero force is applied
More often in practice, truncation error is nonzero
Approaches to control truncation error:

Reduce time step, Ar
Select a different numerical integrator

See text for more background information and
references

37

!a Truncation Error

Explicit Euler Integration —

Truncation Error (At = 0.2s)

Truncation Error (At = 0.15s)

(11.5362]
0.0
| 7.800

(10.1536]
0.0

| 4.9000 |

2.2900

numerical

numerical

10.0768 10.0768
Truncation Error (At =0.01s) =| 0.0 -1 0.0
numerical exa

(11.5362]
0.0
| 7.6038

(10.1536
0.0

| 4.8510 |

2.2895

Lets Look at Truncation Error (position only)

Truncation Error

|

0.0
0.0
0.1962

[0.0
0.0
0.049

0.0
0.0
0.0005

38

| Explicit Euler Integration —
ﬂ Truncation Error

1.00

0.80

“is a linear (first-
plicit Euler
rder-Accurate in

0.60

0.40 -

0.20 - by "O(An)”

0.00 | \ | | |
0.00 0.05 0.10 015 0.20 0.25

Al(secs)

(1/4¢) * Truncation Error

39

{101 I S L e

Il

Explicit Euler Integration -
Computing Solution Over Time

L J T

The solution proceeds step-by-step, each
time integrating from the prior state
Position (m) Linear Momentum (kg-m/s) Force (N) Velocity (m/s)

Time Dx Py D, mV mV, mv, F, F, F, V. v v,
5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 2453 7.68 0.00 29.00
5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04
5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08
5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11
1040| 5148 000 2087 19.20 0.00 -59.93 0.00 000 -2453 7.68 000 -23.97

50.00 -
—_ < Projectile Launch
E 40.00 - Position
5 A Target Position
% 30.00 A
9 — Closed-Form
= 20.00 A
k3] —o— Explicit Euler
t 10.00 -
O
> (=]

0.00 Y . T]

0.00 20.00 40.00 60.00
40

Horizontal Position (m)

N

Finite Difference Methods

The Ver/et Integrator:

2
S(+Ar)=2 (1) _s(t_m)+(m)2[d2smj
new state PriOT;t—;ltel prior state 2 di

A
state derivative

Must store state at two prior time steps, S(7) and S(z-Ar)
Uses second derivative of state instead of the first

Valid for constant time step only (as shown above)

For Verlet, choice of state and state derivative for a particle:

S =(p) d’S/dt” = (F/m)=(a)

41

I T A R E

Verlet Integration

)
d

Since Verlet requires two prior values of state, S(¢) and S(#-4r),
you must use some method other than Verlet to produce the
first numerical state after start of simulation, S(z, . +Ar)

Solution: Use explicit Euler integration to produce S(z, .. +A?),
then Verlet for all subsequent time steps

dZ
Position (m) Acceleration (m/s?) S(t. . , —S(t. .
». 2, », a. a, a, (_/ (mlt) dt2 (zmt)
. 10.00 0.00 2.00 0.00 0.00 -9.81 5
. 11.54 0.00 7.80 0.00 0.00 -9.81 d
N O TN S(t,, +A8), —=S(t,, + M)
Y dt
p a=<0,0,-g>
S=<p> d’S/dr? = <a>

42

I HET

.rr

Verlet Integration

The solution proceeds step-by-step, each time integrating from the
prior two states

Position (m) Acceleration (m/s?)
Time Dx Py P, ay a, a,
500 10.00 0.00 2.00 0.00 0.00 -9.81
S(t_ At) 520 11.54 0.00 7.80 0.00 0.00 -9.81 d?
T~s40| 13.07 0.00 13.21 0.00 0.00 -9.81

5.60[> 14.61 0.00 18.22 0.00 0.00 -9.81 S(t)
2

S(t) 586> 16.14 0.00 22.85 0.00 0.00 -9.81 / dt

6.00] > 17.68 0.00 27.08 0.00 0.00 -9.81

S(t+At)~ 1040] 5148 000 2087] 000 0.0 -9.81

For constant acceleration, Verlet integration produces results identical
to those of explicit Euler

But, results are different when non-constant forces are applied

Verlet Integration tends to be more stable than explicit Euler for
generalized forces

43

Real-time Game Physics

Generalized Rigid Bodies

Generalized Rigid Bodies

Key Differences from Particles

Not necessarily spherical in shape
Position, p, represents object’s center-of-mass location
Surface may not be perfectly smooth

Friction forces may be present

Experience rotational motion in addition to translational
(position only) motion

G Center of Mass
45

Generalized Rigid Bodies —
Simulation

* Angular Kinematics
Orientation, 3x3 matrix R or quaternion, g
Angular velocity, ®

As with translational/particle kinematics, all properties are
measured in world coordinates

Additional Object Properties
Inertia tensor, J
Center-of-mass
Additional State Properties for Simulation
Orientation
Angular momentum, L=J®
Corresponding state derivatives

46

| Generalized Rigid Bodies -
g; Simulation

Torque
Analogous to a force

Causes rotational acceleration
Cause a change in angular momentum

Torque is the result of a force (friction, collision response,
spring, damper, etc.)

& = Center-of-Mass

47

{101 I S L e

Il

Generalized Rigid Bodies —
Numerical Simulation

“I',J HRLTT

Using Finite Difference Integrators
Translational components of state <mV, p> are the same

S and dS/dt are expanded to include angular momentum and
orientation, and their derivatives

Be careful about coordinate system representation for J, R, etc.
Otherwise, integration step is identical to the translation only case
Additional Post-integration Steps

Adjust orientation for consistency
Adjust updated R to ensure it is orthogonal
Normalize ¢

Update angular velocity, o
See text for more details

48

Collision Response

Why?
Performed to keep objects from interpenetrating
To ensure behavior similar to real-world objects

Two Basic Approaches

Approach 1: Instantaneous change of velocity at time of
collision

Benefits:
Visually the objects never interpenetrate

Result is generated via closed-form equations, and is perfectly
stable

Difficulties:

Precise detection of time and location of collision can be
prohibitively expensive (frame rate killer)

Logic to manage state is complex

49

Collision Response

Two Basic Approaches (continued)

Approach 2: Gradual change of velocity and position over
time, following collision

Benefits
Does not require precise detection of time and location of collision
State management is easy

Potential to be more realistic, if meshes are adjusted to deform
according to predicted interpenetration

Difficulties

Object interpenetration is likely, and parameters must be tweaked
to manage this

Simulation can be subject to numerical instabilities, often requiring
the use of implicit finite difference methods

50

Final Comments

Instantaneous Collision Response

Classical approach: Impulse-momentum equations
See text for full details

Gradual Collision Response

Classical approach: Penalty force methods

Resolve interpenetration over the course of a few integration
steps

Penalty forces can wreak havoc on numerical integration
Instabilities galore
Implicit finite difference equations can handle it
But more difficult to code
Geometric approach: Ignore physical response equations

Enforce C,:>urely geometric constraints once interpenetration has
occurre

51

Fixed Time Step Simulation

Numerical simulation works best if the simulator uses
a fixed time step

e.g., choose Ar = 0.02 seconds for physics updates of 1/50
second

Do not change At to correspond to frame rate

Instead, write an inner loop that allows physics simulation to
catch up with frame rate, or wait for frames to catch up with
physics before continuing

This is easy to do
Read the text for more details and references!

52

Final Comments

Simple Games

Closed-form particle equations may be all you
need

Numerical particle simulation adds flexibility
without much coding effort

Collision detection is probably the most difficult
part of this
Generalized Rigid Body Simulation

Includes rotational effects and interesting (non-
constant) forces

See text for details on how to get started

53

Final Comments

Full-Up Simulation
The text and this presentation just barely touch the surface

Additional considerations
Multiple simultaneous collision points
Articulating rigid body chains, with joints
Friction, rolling friction, friction during collision
Mechanically applied forces (motors, etc.)
Resting contact/stacking
Breakable objects
Soft bodies
Smoke, clouds, and other gases
Water, oil, and other fluids

54

