Chapter 4.3 Real-time Game Physics

Outline

- Introduction
 - Motivation for including physics in games
 - Practical development team decisions
- Particle Physics
 - Particle Kinematics
 - Closed-form Equations of Motion
- Numerical Simulation
 - Finite Difference Methods
 - Explicit Euler Integration
 - Verlet Integration
- Brief Overview of Generalized Rigid Bodies
- Brief Overview of Collision Response
- Final Comments

Real-time Game Physics

Introduction

Why Physics?

The Human Experience

- Real-world motions are physically-based
- Physics can make simulated game worlds appear more natural
- Makes sense to strive for physically-realistic motion for some types of games
- Emergent Behavior
 - Physics simulation can enable a richer gaming experience

Why Physics?

- Developer/Publisher Cost Savings
 - Classic approaches to creating realistic motion:
 - Artist-created keyframe animations
 - Motion capture
 - Both are labor intensive and expensive
 - Physics simulation:
 - Motion generated by algorithm
 - Theoretically requires only minimal artist input
 - Potential to substantially reduce content development cost

- Physics in Digital Content Creation Software:
 - Many DCC modeling tools provide physics
 - Export physics-engine-generated animation as keyframe data
 - Enables incorporation of physics into game engines that do not support real-time physics
 - Straightforward update of existing asset creation pipelines
 - Does not provide player with the same emergentbehavior-rich game experience
 - Does not provide full cost savings to developer/publisher

Real-time Physics in Game at Runtime:

- Enables the emergent behavior that provides player a richer game experience
- Potential to provide full cost savings to developer/publisher
- May require significant upgrade of game engine
- May require significant update of asset creation pipelines
- May require special training for modelers, animators, and level designers
- Licensing an existing engine may significantly increase third party middleware costs

- License vs. Build Physics Engine:
 - License middleware physics engine
 - Complete solution from day 1
 - Proven, robust code base (in theory)
 - Most offer some integration with DCC tools
 - Features are always a tradeoff

- License vs. Build Physics Engine:
 - Build physics engine in-house
 - Choose only the features you need
 - Opportunity for more game-specific optimizations
 - Greater opportunity to innovate
 - Cost can be easily be much greater
 - No asset pipeline at start of development

Real-time Game Physics

The Beginning: Particle Physics

The Beginning: Particle Physics

- What is a Particle?
 - A sphere of finite radius with a perfectly smooth, frictionless surface
 - Experiences no rotational motion
- Particle Kinematics
 - Defines the basic properties of particle motion
 - Position, Velocity, Acceleration

Particle Kinematics - Position

Location of Particle in World Space

SI Units: meters (m)

Particle Kinematics - Velocity and Acceleration

- Velocity (SI units: m/s)
 - First time derivative of position:

$$\mathbf{V}(t) = \lim_{\Delta t \to 0} \frac{\mathbf{p}(t + \Delta t) - \mathbf{p}(t)}{\Delta t} = \frac{d}{dt} \mathbf{p}(t)$$

- Acceleration (SI units: m/s²)
 - First time derivative of velocity
 - Second time derivative of position

$$\mathbf{a}(t) = \frac{d}{dt} \mathbf{V}(t) = \frac{d^2}{dt^2} \mathbf{p}(t)$$

Newton's 2nd Law of Motion

- Paraphrased "An object's change in velocity is proportional to an applied force"
- The Classic Equation:

$$\mathbf{F}(t) = m\mathbf{a}(t)$$

- m = mass (SI units: kilograms, kg)
- **F**(*t*) = force (SI units: Newtons)

What is Physics Simulation?

• The Cycle of Motion:

- Force, $\mathbf{F}(t)$, causes acceleration
- Acceleration, a(t), causes a change in velocity
- Velocity, V(t) causes a change in position
- Physics Simulation:
 - Solving variations of the above equations over time to emulate the cycle of motion

Example: 3D Projectile Motion

- Constant Force
 - Weight of the projectile, W = mg
 - **g** is constant acceleration due to gravity

Closed-form Projectile Equations of Motion:

$$\mathbf{V}(t) = \mathbf{V}_{init} + \mathbf{g}(t - t_{init})$$
$$\mathbf{p}(t) = \mathbf{p}_{init} + \mathbf{V}_{init}(t - t_{init}) + \frac{1}{2}\mathbf{g}(t - t_{init})^2$$

 These closed-form equations are valid, and exact*, for any time, t, in seconds, greater than or equal to t_{init}

Example: 3D Projectile Motion

Initial Value Problem

- Simulation begins at time t_{init}
- The initial velocity, V_{init} and position, p_{init} , at time t_{init} , are known
- Solve for later values at any future time, t, based on these initial values

On Earth:

• If we choose positive Z to be straight up (away from center of Earth), $g_{Earth} = 9.81 \text{ m/s}^2$:

$$\mathbf{g}_{Earth} = -g_{Earth} \hat{k} = \langle 0.0, 0.0, -9.81 \rangle \text{ m/s}^2$$

Concrete Example: Target Practice

Concrete Example: Target Practice

Choose V_{init} to Hit a Stationary Target

- **p**_{target} is the stationary target location
- We would like to choose the initial velocity, V_{init}, required to hit the target at some future time, t_{hit}.
- Here is our equation of motion at time t_{hit}:

$$\mathbf{p}_{target} = \mathbf{p}_{init} + \mathbf{V}_{init} \left(t_{hit} - t_{init} \right) + \frac{1}{2} \mathbf{g} \left(t_{hit} - t_{init} \right)^2$$

- Solution in general is a bit tedious to derive...
- Infinite number of solutions!
- Hint: Specify the magnitude of V_{init}, solve for its direction

H.

Concrete Example: Target Practice

Choose Scalar launch speed, V_{init}, and Let:

 $\mathbf{V}_{init} = \left\langle V_{init} \cos\theta\cos\phi, V_{init} \sin\theta\cos\phi, V_{init} \sin\phi \right\rangle$

Where:

$$\cos\theta = \frac{p_{target,x} - p_{init,x}}{\sqrt{\left(p_{target,x} - p_{init,x}\right)^2 - \left(p_{target,y} - p_{init,y}\right)^2}}; \quad \sin\theta = \frac{p_{target,y} - p_{init,y}}{\sqrt{\left(p_{target,x} - p_{init,x}\right)^2 - \left(p_{target,y} - p_{init,y}\right)^2}}}{\sqrt{\left(p_{target,x} - p_{init,x}\right)^2 - \left(p_{target,y} - p_{init,y}\right)^2}}}$$
$$\tan\phi = \frac{A \pm \sqrt{A^2 - 2g\left(\frac{A}{V_{init}}\right)^2 \left(\frac{1}{2}g\left(\frac{A}{V_{init}}\right)^2 + p_{target,z} - p_{init,z}\right)}}{g}}{\left(\frac{V_{init}}{A}\right)^2}$$
$$A = \frac{\left(p_{target,y} + p_{target,x}\right) - \left(p_{init,y} + p_{init,x}\right)}{\left(\cos\theta + \sin\theta\right)}$$

Concrete Example: Target Practice

If Radicand in tan \u03c6 Equation is Negative:
No solution. V_{init} is too small to hit the target

$$if\left(A^{2}-2g\left(\frac{A}{V_{init}}\right)^{2}\left(\frac{1}{2}g\left(\frac{A}{V_{init}}\right)^{2}+p_{target,z}-p_{init,z}\right)\right)<0, \text{ then no solution!}$$

- Otherwise:
 - One solution if radicand == 0
 - If radicand > 0, TWO possible launch angles, ϕ
 - Smallest ϕ yields earlier time of arrival, t_{hit}
 - Largest ϕ yields later time of arrival, t_{hit}

Target Practice -A Few Examples $V_{init} = 25 \text{ m/s}$ Value of Radicand of $tan \phi$ equation: **969.31** Launch angle ϕ : 19.4 deg or 70.6 deg 45.00 40.00 35.00 **Projectile Launch** \diamond Vertical Position (m) Position 30.00 **Target Position** Δ 25.00 Trajectory 1 - High 20.00 Angle, Slow Arrival 15.00 Trajectory 2 - Low Angle, Fast Arrival 10.00 5.00

40.00

60.00

0.00

0.00

20.00

Horizontal Position (m)

Target Practice -A Few Examples

 $V_{init} = 20 \text{ m/s}$ Value of Radicand of $tan \phi$ equation:

K.

Target Practice – A Few Examples

 $V_{init} = 19.85 \text{ m/s}$ Value of Radicand of $\tan \phi$ equation: **13.2** Launch angle ϕ : 42.4 deg or 47.6 deg (note convergence)

Target Practice – A Few Examples

 $V_{init} = 19 \text{ m/s}$ Value of Radicand of tan ϕ equation: -290.4 Launch angle ϕ : No solution! V_{init} too small to reach target!

Target Practice – A Few Examples

 $V_{init} = 18 \text{ m/s}$ Value of Radicand of tan ϕ equation: Launch angle ϕ : -6.38 deg or 60.4 deg

2063

Stop Here

Real-time Game Physics

Practical Implementation: Numerical Simulation

What is Numerical Simulation?

Equations Presented Above

- They are "closed-form"
- Valid and exact for constant applied force
- Do not require time-stepping
 - Just determine current game time, t, using system timer
 - *e.g.*, *t* = <u>QueryPerformanceCounter</u> / <u>QueryPerformanceFrequency</u> or equivalent on Microsoft[®] Windows[®] platforms
 - Plug t and t_{init} into the equations
 - Equations produce identical, repeatable, stable results, for any time, t, regardless of CPU speed and frame rate

What is Numerical Simulation?

- The above sounds perfect
- Why not use those equations always?
 - Constant forces aren't very interesting
 - Simple projectiles only
 - Closed-form solutions rarely exist for interesting (nonconstant) forces
- We need a way to deal when there is no closed-form solution...

Numerical Simulation represents a series of techniques for incrementally solving the equations of motion when forces applied to an object are not constant, or when otherwise there is no closed-form solution

Finite Difference Methods

- What are They?
 - The most common family of numerical techniques for rigid-body dynamics simulation
 - Incremental "solution" to equations of motion
 - Derived using truncated Taylor Series expansions
 - See text for a more detailed introduction
- "Numerical Integrator"
 - This is what we generically call a finite difference equation that generates a "solution" over time

H.

Finite Difference Methods

The *Explicit Euler* Integrator:

- Properties of object are stored in a state vector, S
- Use the above integrator equation to incrementally update S over time as game progresses
- Must keep track of prior value of S in order to compute the new
- For Explicit Euler, one choice of state and state derivative for particle:

$$\mathbf{S} = \langle m \mathbf{V}, \mathbf{p} \rangle$$
 $d\mathbf{S}/dt = \langle \mathbf{F}, \mathbf{V} \rangle$

Explicit Euler Integration

 V_{init} = 30 m/s Launch angle, ϕ : 75.2 deg (slow arrival) Launch angle, θ : 0 deg (motion in world xz plane) Mass of projectile, *m*: 2.5 kg Target at <50, 0, 20> meters

Ľ.

Explicit Euler Integration

$$\mathbf{S}(t + \Delta t) = \mathbf{S}(t) + \Delta t \frac{d}{dt} \mathbf{S}(t) = \begin{bmatrix} 19.2\\ 0.0\\ 72.5\\ 10.0\\ 0.0\\ 2.0 \end{bmatrix} + \Delta t \begin{bmatrix} 0.0\\ 0.0\\ -24.53\\ 7.68\\ 0.0\\ 29.0 \end{bmatrix} \begin{bmatrix} 19.2025\\ 0.0\\ 67.5951\\ 11.5362\\ 0.0 \end{bmatrix} \begin{bmatrix} 19.2025\\ 0.0\\ 72.0476\\ 10.7681\\ 0.0 \end{bmatrix} \begin{bmatrix} 19.2025\\ 0.0\\ 72.2549\\ 10.0768\\ 0.0 \end{bmatrix}$$

Exact, Closed - form Solution

$$\begin{bmatrix} 19.2 \\ 0.0 \\ 67.5951 \\ 11.5362 \\ 0.0 \end{bmatrix} \begin{bmatrix} 19.2 \\ 0.0 \\ 72.0476 \\ 10.1536 \\ 0.0 \end{bmatrix} \begin{bmatrix} 19.2 \\ 0.0 \\ 72.2549 \\ 10.0768 \\ 0.0 \end{bmatrix}$$

H.

A Tangent: Truncation Error

- The previous slide highlights values in the numerical solution that are different from the exact, closed-form solution
- This difference between the exact solution and the numerical solution is primarily *truncation error*
- Truncation error is equal and opposite to the value of terms that were removed from the Taylor Series expansion to produce the finite difference equation
- Truncation error, left unchecked, can accumulate to cause simulation to become unstable
 - This ultimately produces floating point overflow
 - Unstable simulations behave unpredictably

A Tangent: Truncation Error

Controlling Truncation Error

- Under certain circumstances, truncation error can become zero, *e.g.*, the finite difference equation produces the exact, correct result
 - For example, when zero force is applied
- More often in practice, truncation error is nonzero
- Approaches to control truncation error:
 - Reduce time step, Δt
 - Select a different numerical integrator
- See text for more background information and references

Explicit Euler Integration – Truncation Error

Explicit Euler Integration – Truncation Error

Explicit Euler Integration -Computing Solution Over Time

The solution proceeds step-by-step, each time integrating from the prior state

	Po	osition (m)		Linear M	omentum (kg-m/s)		Force (N)		Ve	locity (m/s)	
Time	$p_{\rm x}$	p_{y}	p _z	$mV_{\rm x}$	mV_y	mV_z	F_{x}	F_{y}	F _z	$V_{\mathbf{x}}$	Vy	Vz
5.00	10.00	0.00	2.00	19.20	0.00	72.50	0.00	0.00	-24.53	7.68	0.00	29.00
5.20	11.54	0.00	7.80	19.20	0.00	67.60	0.00	0.00	-24.53	7.68	0.00	27.04
5.40	13.07	0.00	13.21	19.20	0.00	62.69	0.00	0.00	-24.53	7.68	0.00	25.08
5.60	14.61	0.00	18.22	19.20	0.00	57.79	0.00	0.00	-24.53	7.68	0.00	23.11
:		:			•			:			:	
10.40	51.48	0.00	20.87	19.20	0.00	-59.93	0.00	0.00	-24.53	7.68	0.00	-23.97

Horizontal Position (m)

h.

Finite Difference Methods

• The *Verlet* Integrator:

- Must store state at two prior time steps, S(t) and $S(t-\Delta t)$
- Uses second derivative of state instead of the first
- Valid for constant time step only (as shown above)
- For Verlet, choice of state and state derivative for a particle:

$$\mathbf{S} = \langle \mathbf{p} \rangle \qquad d^2 \mathbf{S} / dt^2 = \langle \mathbf{F} / m \rangle = \langle \mathbf{a} \rangle$$

Verlet Integration

- Since Verlet requires two prior values of state, S(t) and $S(t-\Delta t)$, you must use some method other than Verlet to produce the first numerical state after start of simulation, $S(t_{init}+\Delta t)$
 - Solution: Use explicit Euler integration to produce $S(t_{init}+\Delta t)$, then Verlet for all subsequent time steps

Verlet Integration

 The solution proceeds step-by-step, each time integrating from the prior two states

		Position (m)			Acceleration (m/s ²)			
	Time	<i>p</i> _x	<i>р</i> у	p _z	a _x	a _y	a _z	
	5.00	10.00	0.00	2.00	0.00	0.00	-9 .81	
$S(t-\Delta t)$	5.20	11.54	0.00	7.80	0.00	0.00	-9 .81	
	5.40	13.07	0.00	13.21	0.00	0.00	-9 .81	
\mathbf{C}	5.60	> 14.61	0.00	18.22	0.00	0.00	-9.81	
S (t) —	5.80	→ 16.14	0.00	22.85	0.00	0.00	-9 .81	
	6.00	7 17.68	0.00	27.08	0.00	0.00	-9 .81	
$\mathbf{C}(1,1,1)$		ĺ.	:			:		
$S(t+\Delta t)^{-1}$	10.40	51.48	0.00	20.87	0.00	0.00	-9. 81	

- For constant acceleration, Verlet integration produces results *identical* to those of explicit Euler
- But, results are different when non-constant forces are applied
- Verlet Integration tends to be more stable than explicit Euler for generalized forces

Real-time Game Physics

Generalized Rigid Bodies

Generalized Rigid Bodies

Key Differences from Particles

- Not necessarily spherical in shape
- Position, p, represents object's center-of-mass location
- Surface may not be perfectly smooth
 - Friction forces may be present
- Experience rotational motion in addition to translational (position only) motion

Generalized Rigid Bodies – Simulation

- Angular Kinematics
 - Orientation, 3x3 matrix R or quaternion, q
 - Angular velocity, ω
 - As with translational/particle kinematics, all properties are measured in world coordinates
- Additional Object Properties
 - Inertia tensor, J
 - Center-of-mass
- Additional State Properties for Simulation
 - Orientation
 - Angular momentum, L=Jω
 - Corresponding state derivatives

Generalized Rigid Bodies -Simulation

- Torque
 - Analogous to a force
 - Causes rotational acceleration
 - Cause a change in angular momentum
 - Torque is the result of a force (friction, collision response, spring, damper, etc.)

Generalized Rigid Bodies – Numerical Simulation

- Using Finite Difference Integrators
 - Translational components of state < mV, p > are the same
 - S and dS/dt are expanded to include angular momentum and orientation, and their derivatives
 - Be careful about coordinate system representation for J, R, etc.
 - Otherwise, integration step is identical to the translation only case
- Additional Post-integration Steps
 - Adjust orientation for consistency
 - Adjust updated **R** to ensure it is orthogonal
 - Normalize q
 - Update angular velocity, ω
 - See text for more details

Collision Response

- Why?
 - Performed to keep objects from interpenetrating
 - To ensure behavior similar to real-world objects
- Two Basic Approaches
 - Approach 1: Instantaneous change of velocity at time of collision
 - Benefits:
 - Visually the objects never interpenetrate
 - Result is generated via closed-form equations, and is perfectly stable
 - Difficulties:
 - Precise detection of time and location of collision can be prohibitively expensive (frame rate killer)
 - Logic to manage state is complex

Collision Response

Two Basic Approaches (continued)

- Approach 2: Gradual change of velocity and position over time, following collision
 - Benefits
 - Does not require precise detection of time and location of collision
 - State management is easy
 - Potential to be more realistic, if meshes are adjusted to deform according to predicted interpenetration
 - Difficulties
 - Object interpenetration is likely, and parameters must be tweaked to manage this
 - Simulation can be subject to numerical instabilities, often requiring the use of implicit finite difference methods

Final Comments

Instantaneous Collision Response

- Classical approach: Impulse-momentum equations
 - See text for full details
- Gradual Collision Response
 - Classical approach: Penalty force methods
 - Resolve interpenetration over the course of a few integration steps
 - Penalty forces can wreak havoc on numerical integration
 - Instabilities galore
 - Implicit finite difference equations can handle it
 - But more difficult to code
 - Geometric approach: Ignore physical response equations
 - Enforce purely geometric constraints once interpenetration has occurred

Fixed Time Step Simulation

- Numerical simulation works best if the simulator uses a fixed time step
 - *e.g.*, choose $\Delta t = 0.02$ seconds for physics updates of 1/50 second
 - Do not change Δt to correspond to frame rate
 - Instead, write an inner loop that allows physics simulation to catch up with frame rate, or wait for frames to catch up with physics before continuing
 - This is easy to do
- Read the text for more details and references!

Final Comments

- Simple Games
 - Closed-form particle equations may be all you need
 - Numerical particle simulation adds flexibility without much coding effort
 - Collision detection is probably the most difficult part of this
- Generalized Rigid Body Simulation
 - Includes rotational effects and interesting (nonconstant) forces
 - See text for details on how to get started

Final Comments

- Full-Up Simulation
 - The text and this presentation just barely touch the surface
 - Additional considerations
 - Multiple simultaneous collision points
 - Articulating rigid body chains, with joints
 - Friction, rolling friction, friction during collision
 - Mechanically applied forces (motors, etc.)
 - Resting contact/stacking
 - Breakable objects
 - Soft bodies
 - Smoke, clouds, and other gases
 - Water, oil, and other fluids