
1

Right of Passage

Chapter 5.1
Graphics

3

Overview

 Fundamentals

 High-Level Organization

 Rendering Primitives

 Textures

 Lighting

 The Hardware Rendering Pipeline

 Conclusions

4

Fundamentals

 Frame and Back Buffer
 Visibility and Depth Buffer
 Stencil Buffer
 Triangles
 Vertices
 Coordinate Spaces
 Textures
 Shaders
 Materials

5

Frame and Back Buffer

 Both hold pixel colors

 Frame buffer is displayed on screen

 Back buffer is just a region of memory

 Image is rendered to the back buffer
 Half-drawn images are very distracting

 Swapped to the frame buffer
 May be a swap, or may be a copy

 Back buffer is larger if anti-aliasing
 Shrink and filter to frame buffer

6

Visibility and Depth Buffer

 Depth buffer is same size as back buffer

 Holds a depth or “Z” value
 Often called the “Z buffer”

 Pixels test their depth against existing value
 If greater, new pixel is further than existing pixel

 Therefore hidden by existing pixel – rejected

 Otherwise, is in front, and therefore visible

 Overwrites value in depth buffer and color in back buffer

 No useful units for the depth value
 By convention, nearer means lower value

 Non-linear mapping from world space

7

Stencil Buffer

 Utility buffers

 Usually eight bits in size

 Usually interleaved with 24-bit depth buffer

 Can write to stencil buffer

 Can reject pixels based on comparison
between existing value and reference

 Many uses for masking and culling

Primitives

8

9

Triangles

 Fundamental primitive of pipelines
 Everything else constructed from them

 (except lines and point sprites)

 Three points define a plane

 Triangle plane is mapped with data
 Textures

 Colors

 “Rasterized” to find pixels to draw

10

Vertices

 A vertex is a point in space

 Plus other attribute data
 Colors

 Surface normal

 Texture coordinates

 Whatever data shader programs need

 Triangles use three vertices
 Vertices shared between adjacent triangles

11

Coordinate Spaces

 World space
 Arbitrary global game space

 Object space
 Child of world space

 Origin at entity’s position and orientation

 Vertex positions and normals stored in this

 Camera space
 Camera’s version of “object” space

12

Coordinate Spaces (2)

 Clip space

 Distorted version of camera space

 Edges of screen make four side planes

 Near and far planes

 Needed to control precision of depth buffer

 Total of six clipping planes

 Distorted to make a cube in 4D clip space

 Makes clipping hardware simpler

13

Coordinate Spaces (3)

Eye

Triangles will
be clipped

Camera
space
visible

frustum

Clip
space

frustum

14

Coordinate Spaces (4)

 Screen space
 Clip space vertices projected to screen space
 Actual pixels, ready for rendering

 Tangent space
 Defined at each point on surface of mesh
 Usually smoothly interpolated over surface
 Normal of surface is one axis
 “tangent” and “binormal” axes lie along surface
 Tangent direction is controlled by artist
 Useful for lighting calculations

More on Tangent Space

15

Tangent space comes up in shading and 1D texel situations.

16

Textures

 Array of texels
 Same a pixel, but for a texture

 Nominally R,G,B,A but can mean anything

 1D, 2D, 3D and “cube map” arrays
 2D is by far the most common

 Basically just a 2D image bitmap

 Often square and power-of-2 in size

 Cube map - six 2D arrays makes hollow cube
 Approximates a hollow sphere of texels

17

Shaders

 A program run at each vertex or pixel
 Generates pixel colors or vertex positions

 Relatively small programs
 Usually tens or hundreds of instructions

 Explicit parallelism
 No direct communication between shaders

 “Extreme SIMD” programming model

 Hardware capabilities evolving rapidly

Shaders

18

19

Materials (category)

 Description of how to render a triangle

 Big blob of data and state
 Vertex and pixel shaders

 Textures

 Global variables (lighting)

 Description of data held in vertices

 Other pipeline state

20

High-Level Organization

(Figuring out what to try and draw)

1. Gameplay and Rendering

2. Render Objects (flyweight)

3. Render Instances

4. Meshes

5. Skeletons

6. Volume Partitioning

21

Gameplay and Rendering

 Rendering speed varies according to scene

 Some scenes more complex than others

 Typically 15-60 frames per second

 Gameplay is constant speed

 Camera view should not change game

 In multiplayer, each person has a different view,
but there is only one shared game

 1 update per second (RTS) to thousands (FPS)

 Keep the two as separate as possible!

22

Render Objects

 Description of renderable object type

 Mesh data (triangles, vertices)

 Material data (shaders, textures, etc)

 Skeleton (+rig) for animation

 Shared by multiple instances

23

Render Instances

 A single entity in a world

 References a render object

 Decides what the object looks like

 Position and orientation

 Lighting state

 Animation state

24

Meshes

 Vertices

 Triangles

 Single material unit

 “Atomic unit of rendering”

 Not quite atomic, depending on hardware

 Single object may have multiple meshes

 Each with different shaders, textures, etc

Meshes

25

26

Skeletons

 Skeleton is a hierarchy of bones

 Deforms meshes for animation

 Typically one skeleton per object

 Used to deform multiple meshes

 See “Character Animation” chapter

 (although deformation is part of rendering)

Skeleton

27

28

Volume Partitioning

 Cannot draw entire world every frame

 Lots of objects – far too slow

 Need to decide quickly what is visible

 Partition world into areas

 Decide which areas are visible

 Draw things in each visible area

 Many ways of partitioning the world

29

Volume Partitioning - Portals

 Nodes joined by portals
 Usually a polygon, but can be any shape

 See if any portal of node is visible

 If so, draw geometry in node

 See if portals to other nodes are visible
 Check only against visible portal shape

 Common to use screen bounding boxes

 Recurse to other nodes

30

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

View
frustum

Node

Portal

Test first
two portals

? ?

31

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

Both visible

32

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

Mark node
visible, test all
portals going
from node

??

33

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

One portal
visible, one
invisible

34

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

Mark node as
visible, other
node not
visited at all.
Check all
portals in
visible node

? ?

?

35

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

One visible,
two invisible

36

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

Mark node as
visible, check
new node’s
portals

?

37

Volume Partitioning – Portals

Visible

Invisible

Not tested

Eye

Node

Portal

One portal
invisible.
No more
visible nodes
or portals to
check.
Render scene.

38

Volume Partitioning – Portals

 Portals are simple and fast

 Low memory footprint

 Automatic generation is difficult
 Generally need to be placed by hand

 Hard to find which node a point is in
 Must constantly track movement of objects

through portals

 Best at indoor scenes
 Outside generates too many portals to be efficient

39

Volume Partitioning – BSP

 Binary space partition tree

 Tree of nodes

 Each node has plane that splits it in two

 Two child nodes, one on each side of plane

 Some leaves marked as “solid”

 Others filled with renderable geometry

40

Volume Partitioning – BSP

 Finding which node a point is in is fast
 Start at top node (current location)
 Test which side of the plane the point is on
 Move to that child node
 Stop when leaf node hit (or all pixels full)

 Visibility determination is similar to portals
 Portals implied from BSP planes

 Automated BSP generation is common
 Generates far more nodes than portals

 Higher memory requirements

BSP in Doom

 BSP maps for each level generated ahead of time.

 Start at root node (represent entire level)

 Draw the leaf child nodes of this node recursively.

 The child node closest to the camera is drawn
first.

 When a subsector (leaf) is reached, draw it.

 The process is complete when the whole column of
pixels is filled (i.e., there are no more gaps left).

 http://maven.smith.edu/~mcharley/bsp/

41

http://maven.smith.edu/~mcharley/bsp/

BSP (1)

42

BSP (2)

43

list of all lines: { A,B,C,D,E,F,G,H }.

BSP (3)

44

Lines that are in front of C: { G, H , F1}
Lines that are in back of C: { A, B, D, E, F2 }

BSP(4)

 Check if camera is in front of or in back
of the wall root node of bsp tree (C).

 Viewpoint is in front of wall C. Draw all
walls behind C first.

 Rendering order will be
F2,E,D,B,A,C,F1,G,H

 Note, drawing G and F1 is dumb!

45

BSP(5)

 Reverse order of portal (wall) drawing.

 Use Z buffer (or stencil buffer) to skip things that
won't be seen.

 Once all pixels are accounted for (something is going
to be drawn) stop.

 Keep track with a utility buffer.

 Parition based on "world space" rather than "wall
space" and entire leaf nodes can be eliminated
because to get to them you have to pass through
one or more "solid" nodes.

46

BSP

47

48

Volume Partitioning: Quadtree

 Quadtree (2D) and octree (3D)

 Quadtrees described here

 Extension to 3D octree is obvious

 Each node is square

 Usually power-of-two in size

 Has four child nodes or leaves

 Each is a quarter of size of parent

49

Volume Partitioning: Quadtree

 Fast to find which node point is in

 Mostly used for simple frustum culling

 Not very good at indoor visibility
 Quadtree edges usually not aligned with

real geometry

 Very low memory requirements

 Good at dynamic moving objects
 Insertion and removal is very fast

Quadtrees

50

51

Volume Partitioning - PVS

 Potentially visible set
 Based on any existing node system
 For each node, stores list of which nodes are

potentially visible
 Use list for node that camera is currently in

 Ignore any nodes not on that list – not visible

 Static lists
 Precalculated at level authoring time
 Ignores current frustum
 Cannot deal with moving occluders

52

Volume Partitioning - PVS

 Very fast
 No recursion, no calculations

 Still need frustum culling

 Difficult to calculate
 Intersection of volumes and portals

 Lots of tests – very slow

 Most useful when combined with other
partitioning schemes

53

Volume Partitioning

 Different methods for different things

 Quadtree/octree for outdoor views

 Does frustum culling well

 Hard to cull much more for outdoor views

 Portals or BSP for indoor scenes

 BSP or quadtree for collision detection

 Portals not suitable

Stop Here ?

54

55

Rendering Primitives

 Strips, Lists, Fans

 Indexed Primitives

 The Vertex Cache

 Quads and Point Sprites

56

Strips, Lists, Fans

1

2

3

4

5

6

7

8
9

1

2

3

4

5

6

7

8

1

2
3 4

5

6

1

2

3

4
5

6

1

2

3

4

5

6

Triangle
list

Triangle fan

Triangle strip

Line list Line strip

57

Strips, Lists, Fans (2)

 List has no sharing

 Vertex count = triangle count * 3

 Strips and fans share adjacent vertices

 Vertex count = triangle count + 2

 Lower memory

 Topology restrictions

 Have to break into multiple rendering calls

58

Strips, Lists, Fans (3)

 Most meshes: tri count = 2x vert count

 Using lists duplicates vertices a lot!

 Total of 6x number of rendering verts

 Strips or fans still duplicate vertices

 Each strip/fan needs its own set of vertices

 More than doubles vertex count

 Typically 2.5x with good strips

 Hard to find optimal strips and fans

 Have to submit each as separate rendering call

59

Strips, Lists, Fans (4)

32 triangles, 25 vertices 4 strips, 40 vertices

25 to 40 vertices is 60% extra data!

60

Indexed Primitives

 Vertices stored in separate array
 No duplication of vertices

 Called a “vertex buffer” or “vertex array”

 Triangles hold indices, not vertices

 Index is just an integer
 Typically 16 bits

 Duplicating indices is cheap

 Indexes into vertex array

61

The Vertex Cache

 Vertices processed by vertex shader

 Results used by multiple triangles

 Avoid re-running shader for each tri

 Storing results in video memory is slow

 So store results in small cache

 Requires indexed primitives

 Cache typically 16-32 vertices in size

 This gets around 95% efficiency

62

The Vertex Cache (2)

 Size and type of cache usually unknown

 LRU or FIFO replacement policy

 Also odd variants of FIFO policy

 Variable cache size according to vertex type

 Reorder triangles to be cache-friendly

 Not the same as finding optimal strips!

 Render nearby triangles together

 “Fairly good” is easy to achieve

 Ideal ordering still a subject for research

63

Quads and Point Sprites

 Quads exist in some APIs

 Rendered as two triangles

 Think of them as a tiny triangle fan

 Not significantly more efficient

 Point sprites are single vertex + a screen size

 Screen-aligned square

 Not just rendered as two triangles

 Annoying hardware-specific restrictions

 Rarely worth the effort

64

Textures

 Texture Formats

 Texture Mapping

 Texture Filtering

 Rendering to Textures

65

Texture Formats

 Textures made of texels

 Texels have R,G,B,A components
 Often do mean red, green, blue colors

 Really just a labelling convention

 Shader decides what the numbers “mean”

 Not all formats have all components

 Different formats have different bit widths for
components
 Trade off storage space and speed for fidelity

66

Texture Formats (2)

 Common formats:

 A8R8G8B8: 8 bits per comp, 32 bits total

 R5G6B5: 5 or 6 bits per comp, 16 bits total

 A32f: single 32-bit floating-point comp

 A16R16G16B16f: four 16-bit floats

 DXT1: compressed 4x4 RGB block: 64 bits

67

Texture Formats (3)

 Texels arranged in variety of ways
 1D linear array of texels

 2D rectangle/square of texels

 3D solid cube of texels

 Six 2D squares of texels in hollow cube

 All the above can have mipmap chains
 Mipmap is half the size in each dimension

 Mipmap chain – all mipmaps to size 1

68

Texture Formats (4)

8x8 2D texture with
mipmap chain

4x4 cube map
(shown with sides

expanded)

69

Texture Mapping

 Texture coordinates called U, V, W

 Only need U for 1D; U,V for 2D

 U,V,W typically stored in vertices

 Or can be computed by shaders

 Ranges from 0 to 1 across texture

 However many texels texture contains

 Except for cube map – range is -1 to +1

70

Texture Mapping (2)

Mirror once

Clamp

Border color

Wrap

 Wrap mode controls values outside 0-1

Mirror

Original

Black edges
shown for
illustration

only

71

Texture Filtering

 Point sampling enlarges without filtering
 When magnified, texels very obvious

 When minified, texture is “sparkly”

 Useful for precise UI and font rendering

 Bilinear filtering blends edges of texels
 Texel only specifies color at centre

 Magnification looks better

 Minification still sparkles a lot

72

Texture Filtering (2)

 Mipmap chains help minification
 Pre-filters a texture to half-size

 Multiple mipmaps, each smaller than last

 Rendering selects appropriate level to use

 Transitions between levels are obvious
 Change is visible as a moving line

 Use trilinear filtering
 Blends between mipmaps smoothly

73

Texture Filtering (3)

 Trilinear can over-blur textures

 When triangles are edge-on to camera

 Especially roads and walls

 Anisotropic filtering solves this

 Takes multiple samples in one direction

 Averages them together

 Quite expensive in current hardware

74

Rendering to Textures

 Textures usually made in art package

 Loaded from disk

 But any 2D image can be a texture

 Can set texture as the target for rendering

 Render scene 1 to texture

 Then set backbuffer as target again

 Render scene 2 using texture

 Cube map needs six renders, one per face

75

Lighting

 Components

 Lighting Environment

 Multiple Lights

 Diffuse Material Lighting

 Normal Maps

 Pre-computed Radiance Transfer

 Specular Material Lighting

 Environment Maps

76

Components

 Lighting is in three stages:

 What light shines on the surface?

 How does the material interact with light?

 What part of the result is visible to eye?

 Real-time rendering merges last two

 Occurs in vertex and/or pixel shader

 Many algorithms can be in either

77

Lighting Environment

 Answers first question:
 What light shines on the surface?

 Standard model is infinitely small lights
 Position

 Intensity

 Color

 Physical model uses inverse square rule
 brightness = light brightness / distance2

78

Lighting Environment (2)

 But this gives huge range of brightnesses

 Monitors have limited range

 In practice it looks terrible

 Most people use inverse distance
 brightness = light brightness / distance

 Add min distance to stop over-brightening
 Except where you want over-brightening!

 Add max distance to cull lights
 Reject very dim lights for performance

79

Multiple Lights

 Environments have tens or hundreds

 Too slow to consider every one every pixel

 Approximate less significant ones

 Ambient light

 Single color added to all lighting

 Washes contrasts out of scene

 Acceptable for overcast daylight scenes

80

Multiple Lights (2)

 Hemisphere lighting

 Sky is light blue

 Ground is dark green or brown

 Dot-product normal with “up vector”

 Blend between the two colors

 Good for brighter outdoor daylight scenes

81

Multiple Lights (3)

 Cube map of irradiance

 Stores incoming light from each direction

 Look up value that normal points at

 Can represent any lighting environment

 Spherical harmonic irradiance

 Store irradiance cube map in frequency space

 10 color values gives at most 6% error

 Calculation instead of cube-map lookup

 Mainly for diffuse lighting

82

Diffuse Material Lighting

 Light is absorbed and re-emitted

 Re-emitted in all directions equally

 So it does not matter where the eye is

 Same amount of light hits the pupil

 “Lambert” diffuse model is common

 Brightness is dot-product between
surface normal and incident light vector

83

Normal Maps

 Surface normal vector stored in vertices

 Changes slowly
 Surfaces look smooth

 Real surfaces are rough
 Lots of variation in surface normal

 Would require lots more vertices

 Normal maps store normal in a texture

 Look up normal at each pixel

 Perform lighting calculation in pixel shader

84

Pre-computed Radiance Transfer

 Surface usually represented by:
 Normal

 Color

 Roughness

 But all we need is how it responds to
light from a certain direction

 Above data is just an approximation

 Why not store response data directly?

85

Pre-computed Radiance Transfer

 Can include effects of:
 Local self-shadowing

 Local scattering of light

 Internal structure (e.g. skin layers)

 But data size is huge
 Color response for every direction

 Different for each part of surface

 Cube-map per texel would be crazy!

86

Pre-computed Radiance Transfer

 Store cube-maps as spherical harmonics
 One SH per texel

 Further compression by other methods

 But:
 Difficult to do animated meshes

 Still lots of memory

 Lots of computation

 Poor at specular materials

87

Specular Material Lighting

 Light bounces off surface

 How much light bounced into the eye?

 Other light did not hit eye – so not visible!

 Common model is “Blinn” lighting

 Surface made of “microfacets”

 They have random orientation

 With some type of distribution

88

Specular Material Lighting (2)

 Light comes from incident light vector
 …reflects off microfacet

 …into eye

 Eye and light vectors fixed for scene

 So we know microfacet normal required

 Called “half vector”
 half vector = (incident + eye)/2

 How many have that normal?

89

Specular Material Lighting (3)

 Microfacets distributed around surface
normal
 According to “smoothness” value

 Dot-product of half-vector and normal
 Then raise to power of “smoothness”

 Gives bright spot
 Where normal=half vector

 Tails off quicker when material is smoother

90

Specular Material Lighting (4)

half=(light+eye)/2

alignment=max (0, dot (half,normal))

brightness=alignmentsmoothness

light vector

normal
half vector

eye vector

91

Environment Maps

 Blinn used for slightly rough materials

 Only models bright lights

 Light from normal objects is ignored

 Smooth surfaces can reflect everything

 No microfacets for smooth surfaces

 Only care about one source of light

 The one that reflects to hit the eye

92

Environment Maps - 2

 Put environment picture in cube map

 Reflect eye vector in surface normal

 Look up result in cube map

 Can take normal from normal map

 Bumpy chrome

93

Environment Maps - 3

 Environment map can be static
 Generic sky + hills + ground

 Often hard to notice that it’s not correct

 Very cheap, very effective

 Or render every frame with real scene
 Render to cube map sides

 Selection of scene centre can be tricky

 Expensive to render scene six times

94

95

Hardware Rendering Pipe

 Input Assembly

 Vertex Shading

 Primitive Assembly, Cull, Clip

 Project, Rasterize

 Pixel Shading

 Z, Stencil, Framebuffer Blend

 Shader Characteristics

 Shader Languages

96

Hardware Rendering Pipe

 Current outline of rendering pipeline

 Can only be very general

 Hardware moves at rapid pace

 Hardware varies significantly in details

 Functional view only

 Not representative of performance

 Many stages move in actual hardware

97

Input Assembly

 State changes handled

 Textures, shaders, blend modes

 Streams of input data read

 Vertex buffers

 Index buffers

 Constant data

 Combined into primitives

98

Vertex Shading

 Vertex data fed to vertex shader
 Also misc. states and constant data

 Program run until completion

 One vertex in, one vertex out
 Shader cannot see multiple vertices

 Shader cannot see triangle structure

 Output stored in vertex cache

 Output position must be in clip space

99

Primitive Assembly, Cull, Clip

 Vertices read from cache

 Combined to form triangles

 Cull triangles

 Frustum cull

 Back face (clockwise ordering of vertices)

 Clipping performed on non-culled tris

 Produces tris that do not go off-screen

100

Project, Rasterize

 Vertices projected to screen space
 Actual pixel coordinates

 Triangle is rasterized
 Finds the pixels it actually affects

 Finds the depth values for those pixels

 Finds the interpolated attribute data
 Texture coordinates

 Anything else held in vertices

 Feeds results to pixel shader

101

Pixel Shading

 Program run once for each pixel

 Given interpolated vertex data

 Can read textures

 Outputs resulting pixel color

 May optionally output new depth value

 May kill pixel

 Prevents it being rendered

102

Z, Stencil, Framebuffer Blend

 Z and stencil tests performed

 Pixel may be killed by tests

 If not, new Z and stencil values written

 If no framebuffer blend

 Write new pixel color to backbuffer

 Otherwise, blend existing value with new

103

Shader Characteristics

 Shaders rely on massive parallelism

 Breaking parallelism breaks speed

 Can be thousands of times slower

 Shaders may be executed in any order

 So restrictions placed on what shader can do

 Write to exactly one place

 No persistent data

 No communication with other shaders

104

Shader Languages

 Many different shader capabilities

 Early languages looked like assembly
 Different assembly for each shader version

 Now have C-like compilers
 Hides a lot of implementation details

 Works with multiple versions of hardware

 Still same fundamental restrictions
 Don’t break parallelism!

 Expected to keep evolving rapidly

105

Conclusions

 Traverse scene nodes
 Reject or ignore invisible nodes

 Draw objects in visible nodes

 Vertices transformed to screen space
 Using vertex shader programs

 Deform mesh according to animation

 Make triangles from them

 Rasterize into pixels

106

Conclusions (2)

 Lighting done by combination

 Some part vertex shader

 Some part pixel shader

 Results in new color for each pixel

 Reject pixels that are invisible

 Write or blend to backbuffer

