
Chapter 5.2
Character Animation

2

Overview

 Fundamental Concepts
 Animation Storage
 Playing Animations
 Blending Animations
 Motion Extraction
 Mesh Deformation
 Inverse Kinematics
 Attachments & Collision Detection
 Conclusions

3

Fundamental Concepts

 Skeletal Hierarchy

 The Transform

 Euler Angles

 The 3x3 Matrix

 Quaternions

 Animation vs Deformation

 Models and Instances

 Animation Controls

4

Skeletal Hierarchy

 The Skeleton is a tree of bones
 Often flattened to an array in practice

 Top bone in tree is the “root bone”
 May have multiple trees, so multiple roots

 Each bone has a transform
 Stored relative to its parent’s transform

 Transforms are animated over time

 Tree structure is often called a “rig”

5

The Transform

 “Transform” is the term for combined:
 Translation

 Rotation

 Scale

 Shear

 Can be represented as 4x3 or 4x4 matrix

 But usually store as components

 Non-identity scale and shear are rare
 Optimize code for common trans+rot case

6

Euler Angles

 Three rotations about three axes

 Intuitive meaning of values

 But… “Euler Angles Are Evil”
 No standard choice or order of axes

 Singularity “poles” with infinite number of
representations

 Interpolation of two rotations is hard

 Slow to turn into matrices

7

3x3 Matrix Rotation

 Easy to use

 Moderately intuitive

 Large memory size - 9 values

 Animation systems always low on memory

 Interpolation is hard

 Introduces scales and shears

 Need to re-orthonormalize matrices after

8

Quaternions

 Represents a rotation around an axis

 Four values <x,y,z,w>

 <x,y,z> is axis vector times sin(angle/2)

 w is cos(angle/2)

 No singularities

 But has dual coverage: Q same rotation as –Q

 This is useful in some cases!

 Interpolation is fast

9

Animation vs Deformation

 Skeleton + bone transforms = “pose”

 Animation changes pose over time
 Knows nothing about vertices and meshes

 Done by “animation” system on CPU

 Deformation takes a pose, distorts the
mesh for rendering
 Knows nothing about change over time

 Done by “rendering” system, often on GPU

10

Model

 Describes a single type of object

 Skeleton + rig

 One per object type

 Referenced by instances in a scene

 Usually also includes rendering data

 Mesh, textures, materials, etc

 Physics collision hulls, gameplay data, etc

11

Instance

 A single entity in the game world

 References a model

 Holds current position & orientation

 (and gameplay state – health, ammo, etc)

 Has animations playing on it

 Stores a list of animation controls

12

Animation Control

 Links an animation and an instance
 1 control = 1 anim playing on 1 instance

 Holds current data of animation
 Current time

 Speed

 Weight

 Masks

 Looping state

13

Animation Storage

 The Problem

 Decomposition

 Keyframes and Linear Interpolation

 Higher-Order Interpolation

 The Bezier Curve

 Non-Uniform Curves

 Looping

14

Storage – The Problem

 4x3 matrices, 60 per second is huge

 200 bone character = 0.5Mb/sec

 Consoles have around 32-64Mb

 Animation system gets maybe 25%

 PC has more memory

 But also higher quality requirements

15

Decomposition

 Decompose 4x3 into components
 Translation (3 values)

 Rotation (4 values - quaternion)

 Scale (3 values)

 Skew (3 values)

 Most bones never scale & shear

 Many only have constant translation

 Don’t store constant values every frame

16

Keyframes

 Motion is usually smooth

 Only store every nth frame
 Store only “key frames”

 Linearly interpolate between keyframes
 Inbetweening or “tweening”

 Different anims require different rates
 Sleeping = low, running = high

 Choose rate carefully

17

Higher-Order Interpolation

 Tweening uses linear interpolation

 Natural motions are not very linear
 Need lots of segments to approximate well

 So lots of keyframes

 Use a smooth curve to approximate
 Fewer segments for good approximation

 Fewer control points

 Bézier curve is very simple curve

18

The Bézier Curve

 (1-t)3F1+3t(1-t)2T1+3t2(1-t)T2+t3F2

t=0.25

F1

T1

T2

F2

t=1.0

t=0.0

19

The Bézier Curve (2)

 Quick to calculate

 Precise control over end tangents

 Smooth
 C0 and C1 continuity are easy to achieve

 C2 also possible, but not required here

 Requires three control points per curve
 (assume F2 is F1 of next segment)

 Far fewer segments than linear

20

Bézier Variants

 Store 2F2-T2 instead of T2

 Equals next segment T1 for smooth curves

 Store F1-T1 and T2-F2 vectors instead

 Same trick as above – reduces data stored

 Called a “Hermite” curve

 Catmull-Rom curve

 Passes through all control points

21

Non-Uniform Curves

 Each segment stores a start time as well

 Time + control value(s) = “knot”

 Segments can be different durations

 Knots can be placed only where needed
 Allows perfect discontinuities

 Fewer knots in smooth parts of animation

 Add knots to guarantee curve values
 Transition points between animations

 “Golden poses”

22

Looping and Continuity

 Ensure C0 and C1 for smooth motion

 At loop points

 At transition points

 Walk cycle to run cycle

 C1 requires both animations are playing
at the same speed

 Reasonable requirement for anim system

23

Playing Animations

 “Global time” is game-time

 Animation is stored in “local time”

 Animation starts at local time zero

 Speed is the ratio between the two

 Make sure animation system can change speed
without changing current local time

 Usually stored in seconds

 Or can be in “frames” - 12, 24, 30, 60 per second

24

Scrubbing

 Sample an animation at any local time

 Important ability for games

 Footstep planting

 Motion prediction

 AI action planning

 Starting a synchronized animation

 Walk to run transitions at any time

 Avoid delta-compression storage methods

 Very hard to scrub or play at variable speed

25

Blending Animations

 The Lerp

 Quaternion Blending Methods

 Multi-way Blending

 Bone Masks

 The Masked Lerp

 Hierarchical Blending

26

The Lerp

 Foundation of all blending

 “Lerp”=Linear interpolation

 Blends A, B together by a scalar weight

 lerp (A, B, i) = iA + (1-i)B

 i is blend weight and usually goes from 0 to 1

 Translation, scale, shear lerp are obvious

 Componentwise lerp

 Rotations are trickier

27

Quaternion Blending

 Normalizing lerp (nlerp)

 Lerp each component

 Normalize (can often be approximated)

 Follows shortest path

 Not constant velocity

 Multi-way-lerp is easy to do

 Very simple and fast

28

Quaternion Blending (2)

 Spherical lerp (slerp)

 Usual textbook method

 Follows shortest path

 Constant velocity

 Multi-way-lerp is not obvious

 Moderate cost

29

Quaternion Blending (3)

 Log-quaternion lerp (exp map)

 Rather obscure method

 Does not follow shortest path

 Constant velocity

 Multi-way-lerp is easy to do

 Expensive

30

Quaternion Blending (4)

 No perfect solution!

 Each missing one of the features

 All look identical for small interpolations
 This is the 99% case

 Blending very different animations looks
bad whichever method you use

 Multi-way lerping is important

 So use cheapest - nlerp

31

Multi-way Blending

 Can use nested lerps
 lerp (lerp (A, B, i), C, j)
 But n-1 weights - counterintuitive
 Order-dependent

 Weighted sum associates nicely
 (iA + jB + kC + …) / (i + j + k + …)
 But no i value can result in 100% A

 More complex methods
 Less predictable and intuitive
 Can be expensive

32

Bone Masks

 Some animations only affect some bones
 Wave animation only affects arm
 Walk affects legs strongly, arms weakly

 Arms swing unless waving or holding something

 Bone mask stores weight for each bone
 Multiplied by animation’s overall weight
 Each bone has a different effective weight
 Each bone must be blended separately

 Bone weights are usually static
 Overall weight changes as character changes

animations

33

The Masked Lerp

 Two-way lerp using weights from a mask

 Each bone can be lerped differently

 Mask value of 1 means bone is 100% A

 Mask value of 0 means bone is 100% B

 Solves weighted-sum problem

 (no weight can give 100% A)

 No simple multi-way equivalent

 Just a single bone mask, but two animations

34

Hierarchical Blending

 Combines all styles of blending

 A tree or directed graph of nodes

 Each leaf is an animation

 Each node is a style of blend
 Blends results of child nodes

 Construct programmatically at load time
 Evaluate with identical code each frame

 Avoids object-specific blending code

 Nodes with weights of zero not evaluated

35

Motion Extraction

 Moving the Game Instance

 Linear Motion Extraction

 Composite Motion Extraction

 Variable Delta Extraction

 The Synthetic Root Bone

 Animation Without Rendering

36

Moving the Game Instance

 Game instance is where the game thinks the
object (character) is

 Usually just
 pos, orientation and bounding box

 Used for everything except rendering
 Collision detection

 Movement

 It’s what the game is!

 Must move according to animations

37

Linear Motion Extraction

 Find position on last frame of animation

 Subtract position on first frame of animation

 Divide by duration

 Subtract this motion from animation frames

 During animation playback, add this delta
velocity to instance position

 Animation is preserved and instance moves

 Do same for orientation

38

Linear Motion Extraction (2)

 Only approximates straight-line motion

 Position in middle of animation is wrong

 Midpoint of a jump is still on the ground!

 What if animation is interrupted?

 Instance will be in the wrong place

 Incorrect collision detection

 Purpose of a jump is to jump over things!

39

Composite Motion Extraction

 Approximates motion with circular arc

 Pre-processing algorithm finds:

 Axis of rotation (vector)

 Speed of rotation (radians/sec)

 Linear speed along arc (metres/sec)

 Speed along axis of rotation (metres/sec)

 e.g. walking up a spiral staircase

40

Composite Motion Extraction (2)

 Very cheap to evaluate

 Low storage costs

 Approximates a lot of motions well

 Still too simple for some motions

 Mantling ledges

 Complex acrobatics

 Bouncing

41

Variable Delta Extraction

 Uses root bone motion directly

 Sample root bone motion each frame

 Find delta from last frame

 Apply to instance pos+orn

 Root bone is ignored when rendering

 Instance pos+orn is the root bone

42

Variable Delta Extraction (2)

 Requires sampling the root bone

 More expensive than CME

 Can be significant with large worlds

 Use only if necessary, otherwise use CME

 Complete control over instance motion

 Uses existing animation code and data

 No “extraction” needed

43

The Synthetic Root Bone

 All three methods use the root bone

 But what is the root bone?

 Where the character “thinks” they are

 Defined by animators and coders

 Does not match any physical bone

 Can be animated completely independently

 Therefore, “synthetic root bone” or SRB

44

The Synthetic Root Bone (2)

 Acts as point of reference
 SRB is kept fixed between animations

 During transitions
 While blending

 Often at centre-of-mass at ground level
 Called the “ground shadow”
 But tricky when jumping or climbing – no ground!

 Or at pelvis level
 Does not rotate during walking, unlike real pelvis

 Or anywhere else that is convenient

45

Animation Without Rendering

 Not all objects in the world are visible

 But all must move according to anims

 Make sure motion extraction and replay
is independent of rendering

 Must run on all objects at all times
 Needs to be cheap!

 Use LME & CME when possible

 VDA when needed for complex animations

46

Mesh Deformation

 Find Bones in World Space

 Find Delta from Rest Pose

 Deform Vertex Positions

 Deform Vertex Normals

47

Find Bones in World Space

 Animation generates a “local pose”
 Hierarchy of bones

 Each relative to immediate parent

 Start at root

 Transform each bone by parent bone’s world-
space transform

 Descend tree recursively

 Now all bones have transforms in world space
 “World pose”

48

Find Delta from Rest Pose

 Mesh is created in a pose
 Often the “da Vinci man” pose for humans

 Called the “rest pose”

 Must un-transform by that pose first

 Then transform by new pose
 Multiply new pose transforms by inverse of rest

pose transforms

 Inverse of rest pose calculated at mesh load time

 Gives “delta” transform for each bone

49

Deform Vertex Positions

 Deformation usually performed on GPU

 Delta transforms fed to GPU
 Usually stored in “constant” space

 Vertices each have n bones

 n is usually 4
 4 bone indices

 4 bone weights 0-1

 Weights must sum to 1

50

Deform Vertex Positions (2)

vec3 FinalPosition = {0,0,0};

for (i = 0; i < 4; i++)

{

int BoneIndex = Vertex.Index[i];

float BoneWeight = Vertex.Weight[i];

FinalPosition +=

BoneWeight * Vertex.Position *

PoseDelta[BoneIndex]);

}

51

Deform Vertex Normals

 Normals are done similarly to positions

 But use inverse transpose of delta transforms

 Translations are ignored

 For pure rotations, inverse(A)=transpose(A)

 So inverse(transpose(A)) = A

 For scale or shear, they are different

 Normals can use fewer bones per vertex

 Just one or two is common

52

Inverse Kinematics

 FK & IK

 Single Bone IK

 Multi-Bone IK

 Cyclic Coordinate Descent

 Two-Bone IK

 IK by Interpolation

53

FK & IK

 Most animation is “forward kinematics”
 Motion moves down skeletal hierarchy

 But there are feedback mechanisms
 Eyes track a fixed object while body moves

 Foot stays still on ground while walking

 Hand picks up cup from table

 This is “inverse kinematics”
 Motion moves back up skeletal hierarchy

54

Single Bone IK

 Orient a bone in given direction
 Eyeballs

 Cameras

 Find desired aim vector

 Find current aim vector

 Find rotation from one to the other
 Cross-product gives axis

 Dot-product gives angle

 Transform object by that rotation

55

Multi-Bone IK

 One bone must get to a target position

 Bone is called the “end effector”

 Can move some or all of its parents

 May be told which it should move first

 Move elbow before moving shoulders

 May be given joint constraints

 Cannot bend elbow backwards

56

Cyclic Coordinate Descent

 Simple type of multi-bone IK

 Iterative

 Can be slow

 May not find best solution

 May not find any solution in complex cases

 But it is simple and versatile

 No precalculation or preprocessing needed

57

Cyclic Coordinate Descent (2)

 Start at end effector

 Go up skeleton to next joint

 Move (usually rotate) joint to minimize
distance between end effector and target

 Continue up skeleton one joint at a time

 If at root bone, start at end effector again

 Stop when end effector is “close enough”

 Or hit iteration count limit

58

Cyclic Coordinate Descent (3)

 May take a lot of iterations

 Especially when joints are nearly
straight and solution needs them bent

 e.g. a walking leg bending to go up a step

 50 iterations is not uncommon!

 May not find the “right” answer

 Knee can try to bend in strange directions

59

Two-Bone IK

 Direct method, not iterative

 Always finds correct solution
 If one exists

 Allows simple constraints
 Knees, elbows

 Restricted to two rigid bones with a rotation
joint between them
 Knees, elbows!

 Can be used in a cyclic coordinate descent

60

Two-Bone IK (2)

 Three joints must stay in user-specified plane
 e.g. knee may not move sideways

 Reduces 3D problem to a 2D one

 Both bones must remain same length

 Therefore, middle joint is at intersection of
two circles

 Pick nearest solution to current pose

 Or one solution is disallowed
 Knees or elbows cannot bend backwards

61

Two-Bone IK (3)

Allowed
elbow

position

Shoulder

Wrist

Disallowed
elbow

position

62

IK by Interpolation

 Animator supplies multiple poses

 Each pose has a reference direction
 e.g. direction of aim of gun

 Game has a direction to aim in

 Blend poses together to achieve it

 Source poses can be realistic
 As long as interpolation makes sense

 Result looks far better than algorithmic IK with
simple joint limits

63

IK by Interpolation (2)

 Result aim point is inexact

 Blending two poses on complex skeletons
does not give linear blend result

 Can iterate towards correct aim

 Can tweak aim with algorithmic IK

 But then need to fix up hands, eyes, head

 Can get rifle moving through body

64

Attachments

 e.g. character holding a gun

 Gun is a separate mesh

 Attachment is bone in character’s skeleton

 Represents root bone of gun

 Animate character

 Transform attachment bone to world space

 Move gun mesh to that pos+orn

65

Attachments (2)

 e.g. person is hanging off bridge

 Attachment point is a bone in hand

 As with the gun example

 But here the person moves, not the bridge

 Find delta from root bone to attachment bone

 Find world transform of grip point on bridge

 Multiply by inverse of delta

 Finds position of root to keep hand gripping

66

Collision Detection

 Most games just use bounding volume

 Some need perfect triangle collision
 Slow to test every triangle every frame

 Precalculate bounding box of each bone
 Transform by world pose transform

 Finds world-space bounding box

 Test to see if bbox was hit
 If it did, test the tris this bone influences

67

Conclusions

 Use quaternions
 Matrices are too big, Eulers are too evil

 Memory use for animations is huge
 Use non-uniform spline curves

 Ability to scrub anims is important

 Multiple blending techniques
 Different methods for different places

 Blend graph simplifies code

68

Conclusions (2)

 Motion extraction is tricky but essential
 Always running on all instances in world

 Trade off between cheap & accurate

 Use Synthetic Root Bone for precise control

 Deformation is really part of rendering
 Use graphics hardware where possible

 IK is much more than just IK algorithms
 Interaction between algorithms is key

