Chapter 5.2
Character Animation

| Overview

Fundamental Concepts

Animation Storage

Playing Animations

Blending Animations

Motion Extraction

Mesh Deformation

Inverse Kinematics

Attachments & Collision Detection
Conclusions

Fundamental Concepts

Skeletal Hierarchy

The Transform

Euler Angles

The 3x3 Matrix
Quaternions

Animation vs Deformation
Models and Instances
Animation Controls

Skeletal Hierarchy

The Skeleton is a tree of bones
Often flattened to an array in practice

Top bone in tree is the “root bone”
May have multiple trees, so multiple roots

Each bone has a transform
Stored relative to its parent’s transform

Transforms are animated over time
Tree structure is often called a “rig”

| The Transform

“Transform” is the term for combined:
Translation
Rotation

Scale
Shear

Can be represented as 4x3 or 4x4 matrix
But usually store as components

Non-identity scale and shear are rare
Optimize code for common trans+rot case

Euler Angles

Three rotations about three axes
Intuitive meaning of values

But... "Euler Angles Are Evil”
No standard choice or order of axes

Singularity “poles” with infinite number of
representations

Interpolation of two rotations is hard
Slow to turn into matrices

Al 3x3 Matrix Rotation

Easy to use
Moderately intuitive
Large memory size - 9 values
Animation systems always low on memory

Interpolation is hard
Introduces scales and shears
Need to re-orthonormalize matrices after

| Quaternions

Represents a rotation around an axis
Four values <x,y,z,w>

<X,Yy,z> is axis vector times sin(angle/2)
w is cos(angle/2)

No singularities

But has dual coverage: Q same rotation as —Q
This is useful in some cases!

Interpolation is fast

Animation vs Deformation

Skeleton + bone transforms = “pose”

Animation changes pose over time
Knows nothing about vertices and meshes
Done by “animation” system on CPU

Deformation takes a pose, distorts the

mesh for rendering
Knows nothing about change over time
Done by “rendering” system, often on GPU

Model

Describes a single type of object
Skeleton + rig

One per object type

Referenced by instances in a scene

Usually also includes rendering data
Mesh, textures, materials, etc
Physics collision hulls, gameplay data, etc

10

Instance

A single entity in the game world
References a model

Holds current position & orientation
(and gameplay state — health, ammo, etc)
Has animations playing on it
Stores a list of animation controls

11

“A| Animation Control

Links an animation and an instance

1 control = 1 anim playing on 1 instance
Holds current data of animation

Current time

Speed

Weight

Masks

Looping state

12

| Animation Storage

The Problem

Decomposition

Keyframes and Linear Interpolation
Higher-Order Interpolation

The Bezier Curve

Non-Uniform Curves

Looping

13

A Storage — The Problem

4x3 matrices, 60 per second is huge
200 bone character = 0.5Mb/sec

Consoles have around 32-64Mb
Animation system gets maybe 25%

PC has more memory
But also higher quality requirements

14

Decomposition

Decompose 4x3 into components
Translation (3 values)
Rotation (4 values - quaternion)
Scale (3 values)
Skew (3 values)

Most bones never scale & shear
Many only have constant translation
Don't store constant values every frame

15

Keyframes

Motion is usually smooth

Only store every nth frame
Store only “key frames”

Linearly interpolate between keyframes
Inbetweening or “tweening”

Different anims require different rates
Sleeping = low, running = high
Choose rate carefully

16

Higher-Order Interpolation

Tweening uses linear interpolation

Natural motions are not very linear
Need lots of segments to approximate well
So lots of keyframes

Use a smooth curve to approximate
Fewer segments for good approximation
Fewer control points

Bézier curve is very simple curve

17

YA | The Bézier Curve

18

The Bézier Curve (2)

Quick to calculate
Precise control over end tangents

Smooth

CO and C1 continuity are easy to achieve
C2 also possible, but not required here

Requires three control points per curve
(assume F2 is F1 of next segment)

Far fewer segments than linear

19

A Bézier Variants

Store 2F,-T, instead of T,
Equals next segment T, for smooth curves

Store F,-T, and T,-F, vectors instead
Same trick as above — reduces data stored
Called a "Hermite” curve

Catmull-Rom curve
Passes through all control points

20

Non-Uniform Curves

Each segment stores a start time as well
Time + control value(s) = “knot”
Segments can be different durations

Knots can be placed only where needed
Allows perfect discontinuities
Fewer knots in smooth parts of animation

Add knots to guarantee curve values
Transition points between animations
“Golden poses”

21

A Looping and Continuity

Ensure CO and C1 for smooth motion
At loop points

At transition points
Walk cycle to run cycle

C1 requires both animations are playing
at the same speed

Reasonable requirement for anim system

22

P|ay|ng Animations

“Global time” is game-time

Animation is stored in “local time”
Animation starts at local time zero
Speed is the ratio between the two

Make sure animation system can change speed
without changing current local time

Usually stored in seconds
Or can be in “frames” - 12, 24, 30, 60 per second

23

Scrubbing

Sample an animation at any local time

Important ability for games
Footstep planting
Motion prediction
Al action planning
Starting a synchronized animation
Walk to run transitions at any time
Avoid delta-compression storage methods
Very hard to scrub or play at variable speed

24

Blending Animations

The Lerp

Quaternion Blending Methods
Multi-way Blending

Bone Masks

The Masked Lerp

Hierarchical Blending

25

The Lerp

Foundation of all blending
“Lerp”=Linear interpolation

Blends A, B together by a scalar weight
lerp (A, B, i) = iA + (1-i)B
| is blend weight and usually goes from 0 to 1
Translation, scale, shear lerp are obvious
Componentwise lerp

Rotations are trickier

26

%4 | Quaternion Blending

Normalizing lerp (nlerp)
Lerp each component
Normalize (can often be approximated)
Follows shortest path
Not constant velocity
Multi-way-lerp is easy to do
Very simple and fast

27

!z Quaternion Blending (2)

L

Spherical lerp (slerp)
Usual textbook method
Follows shortest path
Constant velocity
Multi-way-lerp is not obvious
Moderate cost

28

Quaternion Blending (3)

L

Log-quaternion lerp (exp map)
Rather obscure method
Does not follow shortest path
Constant velocity
Multi-way-lerp is easy to do
Expensive

29

Quaternion Blending (4)

No perfect solution!
Each missing one of the features

All look identical for small interpolations
This is the 99% case

Blending very different animations looks
bad whichever method you use

Multi-way lerping is important
So use cheapest - nlerp

30

Can use nested lerps
lerp (lerp (A, B, i), C, j)
But n-1 weights - counterintuitive
Order-dependent
Weighted sum associates nicely
(IA+jB+kC+ ..)/(i+j+k+..)
But no i value can result in 100% A
More complex methods
Less predictable and intuitive
Can be expensive

31

Bone Masks

Some animations only affect some bones
Wave animation only affects arm

Walk affects legs strongly, arms weakly
Arms swing unless waving or holding something

Bone mask stores weight for each bone
Multiplied by animation’s overall weight
Each bone has a different effective weight
Each bone must be blended separately

Bone weights are usually static

Overall weight changes as character changes
animations

32

The Masked Lerp

Two-way lerp using weights from a mask
Each bone can be lerped differently

Mask value of 1 means bone is 100% A
Mask value of 0 means bone is 100% B

Solves weighted-sum problem
(no weight can give 100% A)

No simple multi-way equivalent
Just a single bone mask, but two animations

33

Hierarchical Blending

Combines all styles of blending
A tree or directed graph of nodes

Eac

Eac
B

N leaf is an animation

N node is a style of blend
ends results of child nodes

Construct programmatically at load time
Evaluate with identical code each frame
Avoids object-specific blending code
Nodes with weights of zero not evaluated

34

Motion Extraction

Moving the Game Instance
Linear Motion Extraction
Composite Motion Extraction
Variable Delta Extraction

The Synthetic Root Bone
Animation Without Rendering

35

A Moving the Game Instance

Game instance is where the game thinks the
object (character) is

Usually just
pos, orientation and bounding box

Used for everything except rendering
Collision detection
Movement
It's what the game is!

Must move according to animations

36

Linear Motion Extraction

Find position on last frame of animation
Subtract position on first frame of animation
Divide by duration

Subtract this motion from animation frames

During animation playback, add this delta
velocity to instance position

Animation is preserved and instance moves
Do same for orientation

37

Linear Motion Extraction (2)

Only approximates straight-line motion
Position in middle of animation is wrong
Midpoint of a jump is still on the ground!

What if animation is interrupted?
Instance will be in the wrong place

Incorrect collision detection
Purpose of a jump is to jump over things!

38

A Composite Motion Extraction

Approximates motion with circular arc
Pre-processing algorithm finds:

Axis of rotation (vector)

Speed of rotation (radians/sec)

Linear speed along arc (metres/sec)

Speed along axis of rotation (metres/sec)
e.g. walking up a spiral staircase

39

%2 Composite Motion Extraction (2)

Very cheap to evaluate
Low storage costs
Approximates a lot of motions well

Still too simple for some motions
Mantling ledges
Complex acrobatics
Bouncing

40

Al Variable Delta Extraction

Uses root bone motion directly
Sample root bone motion each frame
Find delta from last frame

Apply to instance pos+orn

Root bone is ighored when rendering
Instance pos+orn is the root bone

41

V2| Variable Delta Extraction (2)

Requires sampling the root bone

More expensive than CME
Can be significant with large worlds
Use only if necessary, otherwise use CME

Complete control over instance motion

Uses existing animation code and data
No “extraction” needed

42

The Synthetic Root Bone

All three methods use the root bone
But what is the root bone?

Where the character “thinks” they are
Defined by animators and coders

Does not match any physical bone
Can be animated completely independently

Therefore, “synthetic root bone” or SRB

43

| The Synthetic Root Bone (2)

Acts as point of reference

SRB is kept fixed between animations

During transitions
While blending

Often at centre-of-mass at ground level
Called the “ground shadow”
But tricky when jumping or climbing — no ground!

Or at pelvis level
Does not rotate during walking, unlike real pelvis

Or anywhere else that is convenient

44

Animation Without Rendering

s in the world are visible

Not all objec

But all must move according to anims

Make sure motion extraction and replay
IS independent of rendering

Must run on all objects at all times

Needs to be

cheap!

Use LME & CME when possible
VDA when needed for complex animations

45

| Mesh Deformation

Find Bones in World Space
Find Delta from Rest Pose
Deform Vertex Positions
Deform Vertex Normals

46

A| Find Bones in World Space

Animation generates a "local pose”
Hierarchy of bones
Each relative to immediate parent

Start at

root

Transform each bone by parent bone’s world-
space transform

Descenc
Now all

tree recursively
bones have transforms in world space

“World

pose”

47

| Find Delta from Rest Pose

Mesh is created in a pose
Often the “da Vinci man” pose for humans
Called the “rest pose”

Must un-transform by that pose first

Then transform by new pose

Multiply new pose transforms by inverse of rest
pose transforms

Inverse of rest pose calculated at mesh load time
Gives “delta” transform for each bone

48

N

Al Deform Vertex Positions

Deformation usually performed on GPU

Delta transforms fed to GPU
Usually stored in “constant” space

Vertices each have 7 bones

nis usually 4
4 bone indices
4 bone weights 0-1
Weights must sum to 1

49

YA | Deform Vertex Positions (2)

vecl3 FinalPosition =
for (1 = 0;

{

{OIOIO};
1< 4; 1++)

int BonelIndex = Vertex.Index[1];
float BoneWeight =

Vertex.Weight[1i];
FinalPosition +=

BoneWeight * Vertex.Position *
PoseDelta[BonelIndex]) ;

50

221 Deform Vertex Normals

Normals are done similarly to positions

But use inverse transpose of delta transforms
Translations are ignored
For pure rotations, inverse(A)=transpose(A)
So inverse(transpose(A)) = A
For scale or shear, they are different
Normals can use fewer bones per vertex
Just one or two is common

51

| Inverse Kinematics

FK & IK

Single Bone IK
Multi-Bone IK

Cyclic Coordinate Descent
Two-Bone IK

IK by Interpolation

52

FK & IK

Most animation is “forward kinematics”
Motion moves down skeletal hierarchy

But there are feedback mechanisms
Eyes track a fixed object while body moves
Foot stays still on ground while walking
Hand picks up cup from table

This is “inverse kinematics”
Motion moves back up skeletal hierarchy

53

A Single Bone IK

Orient a bone in given direction
Eyeballs
Cameras

Find desired aim vector
Find current aim vector

Find rotation from one to the other
Cross-product gives axis
Dot-product gives angle

Transform object by that rotation

Multi-Bone IK

One bone must get to a target position
Bone is called the “end effector”

Can move some or all of its parents

May be told which it should move first
Move elbow before moving shoulders

May be given joint constraints
Cannot bend elbow backwards

55

%A | Cyclic Coordinate Descent

Simple type of multi-bone IK

Iterative
Can be slow
May not find best solution
May not find any solution in complex cases

But it is simple and versatile
No precalculation or preprocessing needed

56

A Cyclic Coordinate Descent (2)

Start at end effector
Go up skeleton to next joint

Move (usually rotate) joint to minimize
distance between end effector and target

Continue up skeleton one joint at a time
If at root bone, start at end effector again
Stop when end effector is “close enough”
Or hit iteration count limit

57

A Cyclic Coordinate Descent (3)

May take a lot of iterations

Especially when joints are nearly
straight and solution needs them bent

e.g. a walking leg bending to go up a step
50 iterations is not uncommon!

May not find the “right” answer
Knee can try to bend in strange directions

58

Two-Bone IK

Direct method, not iterative
Always finds correct solution
If one exists
Allows simple constraints
Knees, elbows
Restricted to two rigid bones with a rotation
joint between them
Knees, elbows!
Can be used in a cyclic coordinate descent

59

Two-Bone IK (2)

Three joints must stay in user-specified plane
e.g. knee may not move sideways

Reduces 3D problem to a 2D one
Both bones must remain same length

Therefore, middle joint is at intersection of
two circles

Pick nearest solution to current pose

Or one solution is disallowed
Knees or elbows cannot bend backwards

60

Zz Two-Bone IK (3)

Disallowed
elbow
.._position

Q Shoulder

Oo— ' Allowed
Wrist ! albow
position

61

IK by Interpolation

Animator supplies multiple poses

Each pose has a reference direction
e.g. direction of aim of gun

Game has a direction to aim in

Blend poses together to achieve it

Source poses can be realistic

As long as interpolation makes sense

Result looks far better than algorithmic IK with
simple joint limits

62

IK by Interpolation (2)

Result aim point is inexact

Blending two poses on complex skeletons
does not give linear blend result

Can iterate towards correct aim

Can tweak aim with algorithmic IK
But then need to fix up hands, eyes, head
Can get rifle moving through body

63

Attachments

e.g. character holding a gun
Gun is a separate mesh

Attachment is bone in character’s skeleton
Represents root bone of gun

Animate character
Transform attachment bone to world space
Move gun mesh to that pos+orn

64

Attachments (2)

e.g. person is hanging off bridge
Attachment point is a bone in hand
As with the gun example

But here the person moves, not the bridge
Find delta from root bone to attachment bone
Find world transform of grip point on bridge

Multiply by inverse of delta
Finds position of root to keep hand gripping

65

Collision Detection

Most games just use bounding volume
Some need perfect triangle collision
Slow to test every triangle every frame

Precalculate bounding box of each bone
Transform by world pose transform
Finds world-space bounding box

Test to see if bbox was hit
If it did, test the tris this bone influences

66

Conclusions

Use quaternions
Matrices are too big, Eulers are too evil

Memory use for animations is huge
Use non-uniform spline curves

Ability to scrub anims is important

Multiple blending techniques
Different methods for different places
Blend graph simplifies code

67

Conclusions (2)

Motion extraction is tricky but essential
Always running on all instances in world
Trade off between cheap & accurate
Use Synthetic Root Bone for precise control

Deformation is really part of rendering
Use graphics hardware where possible

IK is much more than just IK algorithms
Interaction between algorithms is key

68

