
Chapter 5.2
Character Animation

2

Overview

 Fundamental Concepts
 Animation Storage
 Playing Animations
 Blending Animations
 Motion Extraction
 Mesh Deformation
 Inverse Kinematics
 Attachments & Collision Detection
 Conclusions

3

Fundamental Concepts

 Skeletal Hierarchy

 The Transform

 Euler Angles

 The 3x3 Matrix

 Quaternions

 Animation vs Deformation

 Models and Instances

 Animation Controls

4

Skeletal Hierarchy

 The Skeleton is a tree of bones
 Often flattened to an array in practice

 Top bone in tree is the “root bone”
 May have multiple trees, so multiple roots

 Each bone has a transform
 Stored relative to its parent’s transform

 Transforms are animated over time

 Tree structure is often called a “rig”

5

The Transform

 “Transform” is the term for combined:
 Translation

 Rotation

 Scale

 Shear

 Can be represented as 4x3 or 4x4 matrix

 But usually store as components

 Non-identity scale and shear are rare
 Optimize code for common trans+rot case

6

Euler Angles

 Three rotations about three axes

 Intuitive meaning of values

 But… “Euler Angles Are Evil”
 No standard choice or order of axes

 Singularity “poles” with infinite number of
representations

 Interpolation of two rotations is hard

 Slow to turn into matrices

7

3x3 Matrix Rotation

 Easy to use

 Moderately intuitive

 Large memory size - 9 values

 Animation systems always low on memory

 Interpolation is hard

 Introduces scales and shears

 Need to re-orthonormalize matrices after

8

Quaternions

 Represents a rotation around an axis

 Four values <x,y,z,w>

 <x,y,z> is axis vector times sin(angle/2)

 w is cos(angle/2)

 No singularities

 But has dual coverage: Q same rotation as –Q

 This is useful in some cases!

 Interpolation is fast

9

Animation vs Deformation

 Skeleton + bone transforms = “pose”

 Animation changes pose over time
 Knows nothing about vertices and meshes

 Done by “animation” system on CPU

 Deformation takes a pose, distorts the
mesh for rendering
 Knows nothing about change over time

 Done by “rendering” system, often on GPU

10

Model

 Describes a single type of object

 Skeleton + rig

 One per object type

 Referenced by instances in a scene

 Usually also includes rendering data

 Mesh, textures, materials, etc

 Physics collision hulls, gameplay data, etc

11

Instance

 A single entity in the game world

 References a model

 Holds current position & orientation

 (and gameplay state – health, ammo, etc)

 Has animations playing on it

 Stores a list of animation controls

12

Animation Control

 Links an animation and an instance
 1 control = 1 anim playing on 1 instance

 Holds current data of animation
 Current time

 Speed

 Weight

 Masks

 Looping state

13

Animation Storage

 The Problem

 Decomposition

 Keyframes and Linear Interpolation

 Higher-Order Interpolation

 The Bezier Curve

 Non-Uniform Curves

 Looping

14

Storage – The Problem

 4x3 matrices, 60 per second is huge

 200 bone character = 0.5Mb/sec

 Consoles have around 32-64Mb

 Animation system gets maybe 25%

 PC has more memory

 But also higher quality requirements

15

Decomposition

 Decompose 4x3 into components
 Translation (3 values)

 Rotation (4 values - quaternion)

 Scale (3 values)

 Skew (3 values)

 Most bones never scale & shear

 Many only have constant translation

 Don’t store constant values every frame

16

Keyframes

 Motion is usually smooth

 Only store every nth frame
 Store only “key frames”

 Linearly interpolate between keyframes
 Inbetweening or “tweening”

 Different anims require different rates
 Sleeping = low, running = high

 Choose rate carefully

17

Higher-Order Interpolation

 Tweening uses linear interpolation

 Natural motions are not very linear
 Need lots of segments to approximate well

 So lots of keyframes

 Use a smooth curve to approximate
 Fewer segments for good approximation

 Fewer control points

 Bézier curve is very simple curve

18

The Bézier Curve

 (1-t)3F1+3t(1-t)2T1+3t2(1-t)T2+t3F2

t=0.25

F1

T1

T2

F2

t=1.0

t=0.0

19

The Bézier Curve (2)

 Quick to calculate

 Precise control over end tangents

 Smooth
 C0 and C1 continuity are easy to achieve

 C2 also possible, but not required here

 Requires three control points per curve
 (assume F2 is F1 of next segment)

 Far fewer segments than linear

20

Bézier Variants

 Store 2F2-T2 instead of T2

 Equals next segment T1 for smooth curves

 Store F1-T1 and T2-F2 vectors instead

 Same trick as above – reduces data stored

 Called a “Hermite” curve

 Catmull-Rom curve

 Passes through all control points

21

Non-Uniform Curves

 Each segment stores a start time as well

 Time + control value(s) = “knot”

 Segments can be different durations

 Knots can be placed only where needed
 Allows perfect discontinuities

 Fewer knots in smooth parts of animation

 Add knots to guarantee curve values
 Transition points between animations

 “Golden poses”

22

Looping and Continuity

 Ensure C0 and C1 for smooth motion

 At loop points

 At transition points

 Walk cycle to run cycle

 C1 requires both animations are playing
at the same speed

 Reasonable requirement for anim system

23

Playing Animations

 “Global time” is game-time

 Animation is stored in “local time”

 Animation starts at local time zero

 Speed is the ratio between the two

 Make sure animation system can change speed
without changing current local time

 Usually stored in seconds

 Or can be in “frames” - 12, 24, 30, 60 per second

24

Scrubbing

 Sample an animation at any local time

 Important ability for games

 Footstep planting

 Motion prediction

 AI action planning

 Starting a synchronized animation

 Walk to run transitions at any time

 Avoid delta-compression storage methods

 Very hard to scrub or play at variable speed

25

Blending Animations

 The Lerp

 Quaternion Blending Methods

 Multi-way Blending

 Bone Masks

 The Masked Lerp

 Hierarchical Blending

26

The Lerp

 Foundation of all blending

 “Lerp”=Linear interpolation

 Blends A, B together by a scalar weight

 lerp (A, B, i) = iA + (1-i)B

 i is blend weight and usually goes from 0 to 1

 Translation, scale, shear lerp are obvious

 Componentwise lerp

 Rotations are trickier

27

Quaternion Blending

 Normalizing lerp (nlerp)

 Lerp each component

 Normalize (can often be approximated)

 Follows shortest path

 Not constant velocity

 Multi-way-lerp is easy to do

 Very simple and fast

28

Quaternion Blending (2)

 Spherical lerp (slerp)

 Usual textbook method

 Follows shortest path

 Constant velocity

 Multi-way-lerp is not obvious

 Moderate cost

29

Quaternion Blending (3)

 Log-quaternion lerp (exp map)

 Rather obscure method

 Does not follow shortest path

 Constant velocity

 Multi-way-lerp is easy to do

 Expensive

30

Quaternion Blending (4)

 No perfect solution!

 Each missing one of the features

 All look identical for small interpolations
 This is the 99% case

 Blending very different animations looks
bad whichever method you use

 Multi-way lerping is important

 So use cheapest - nlerp

31

Multi-way Blending

 Can use nested lerps
 lerp (lerp (A, B, i), C, j)
 But n-1 weights - counterintuitive
 Order-dependent

 Weighted sum associates nicely
 (iA + jB + kC + …) / (i + j + k + …)
 But no i value can result in 100% A

 More complex methods
 Less predictable and intuitive
 Can be expensive

32

Bone Masks

 Some animations only affect some bones
 Wave animation only affects arm
 Walk affects legs strongly, arms weakly

 Arms swing unless waving or holding something

 Bone mask stores weight for each bone
 Multiplied by animation’s overall weight
 Each bone has a different effective weight
 Each bone must be blended separately

 Bone weights are usually static
 Overall weight changes as character changes

animations

33

The Masked Lerp

 Two-way lerp using weights from a mask

 Each bone can be lerped differently

 Mask value of 1 means bone is 100% A

 Mask value of 0 means bone is 100% B

 Solves weighted-sum problem

 (no weight can give 100% A)

 No simple multi-way equivalent

 Just a single bone mask, but two animations

34

Hierarchical Blending

 Combines all styles of blending

 A tree or directed graph of nodes

 Each leaf is an animation

 Each node is a style of blend
 Blends results of child nodes

 Construct programmatically at load time
 Evaluate with identical code each frame

 Avoids object-specific blending code

 Nodes with weights of zero not evaluated

35

Motion Extraction

 Moving the Game Instance

 Linear Motion Extraction

 Composite Motion Extraction

 Variable Delta Extraction

 The Synthetic Root Bone

 Animation Without Rendering

36

Moving the Game Instance

 Game instance is where the game thinks the
object (character) is

 Usually just
 pos, orientation and bounding box

 Used for everything except rendering
 Collision detection

 Movement

 It’s what the game is!

 Must move according to animations

37

Linear Motion Extraction

 Find position on last frame of animation

 Subtract position on first frame of animation

 Divide by duration

 Subtract this motion from animation frames

 During animation playback, add this delta
velocity to instance position

 Animation is preserved and instance moves

 Do same for orientation

38

Linear Motion Extraction (2)

 Only approximates straight-line motion

 Position in middle of animation is wrong

 Midpoint of a jump is still on the ground!

 What if animation is interrupted?

 Instance will be in the wrong place

 Incorrect collision detection

 Purpose of a jump is to jump over things!

39

Composite Motion Extraction

 Approximates motion with circular arc

 Pre-processing algorithm finds:

 Axis of rotation (vector)

 Speed of rotation (radians/sec)

 Linear speed along arc (metres/sec)

 Speed along axis of rotation (metres/sec)

 e.g. walking up a spiral staircase

40

Composite Motion Extraction (2)

 Very cheap to evaluate

 Low storage costs

 Approximates a lot of motions well

 Still too simple for some motions

 Mantling ledges

 Complex acrobatics

 Bouncing

41

Variable Delta Extraction

 Uses root bone motion directly

 Sample root bone motion each frame

 Find delta from last frame

 Apply to instance pos+orn

 Root bone is ignored when rendering

 Instance pos+orn is the root bone

42

Variable Delta Extraction (2)

 Requires sampling the root bone

 More expensive than CME

 Can be significant with large worlds

 Use only if necessary, otherwise use CME

 Complete control over instance motion

 Uses existing animation code and data

 No “extraction” needed

43

The Synthetic Root Bone

 All three methods use the root bone

 But what is the root bone?

 Where the character “thinks” they are

 Defined by animators and coders

 Does not match any physical bone

 Can be animated completely independently

 Therefore, “synthetic root bone” or SRB

44

The Synthetic Root Bone (2)

 Acts as point of reference
 SRB is kept fixed between animations

 During transitions
 While blending

 Often at centre-of-mass at ground level
 Called the “ground shadow”
 But tricky when jumping or climbing – no ground!

 Or at pelvis level
 Does not rotate during walking, unlike real pelvis

 Or anywhere else that is convenient

45

Animation Without Rendering

 Not all objects in the world are visible

 But all must move according to anims

 Make sure motion extraction and replay
is independent of rendering

 Must run on all objects at all times
 Needs to be cheap!

 Use LME & CME when possible

 VDA when needed for complex animations

46

Mesh Deformation

 Find Bones in World Space

 Find Delta from Rest Pose

 Deform Vertex Positions

 Deform Vertex Normals

47

Find Bones in World Space

 Animation generates a “local pose”
 Hierarchy of bones

 Each relative to immediate parent

 Start at root

 Transform each bone by parent bone’s world-
space transform

 Descend tree recursively

 Now all bones have transforms in world space
 “World pose”

48

Find Delta from Rest Pose

 Mesh is created in a pose
 Often the “da Vinci man” pose for humans

 Called the “rest pose”

 Must un-transform by that pose first

 Then transform by new pose
 Multiply new pose transforms by inverse of rest

pose transforms

 Inverse of rest pose calculated at mesh load time

 Gives “delta” transform for each bone

49

Deform Vertex Positions

 Deformation usually performed on GPU

 Delta transforms fed to GPU
 Usually stored in “constant” space

 Vertices each have n bones

 n is usually 4
 4 bone indices

 4 bone weights 0-1

 Weights must sum to 1

50

Deform Vertex Positions (2)

vec3 FinalPosition = {0,0,0};

for (i = 0; i < 4; i++)

{

int BoneIndex = Vertex.Index[i];

float BoneWeight = Vertex.Weight[i];

FinalPosition +=

BoneWeight * Vertex.Position *

PoseDelta[BoneIndex]);

}

51

Deform Vertex Normals

 Normals are done similarly to positions

 But use inverse transpose of delta transforms

 Translations are ignored

 For pure rotations, inverse(A)=transpose(A)

 So inverse(transpose(A)) = A

 For scale or shear, they are different

 Normals can use fewer bones per vertex

 Just one or two is common

52

Inverse Kinematics

 FK & IK

 Single Bone IK

 Multi-Bone IK

 Cyclic Coordinate Descent

 Two-Bone IK

 IK by Interpolation

53

FK & IK

 Most animation is “forward kinematics”
 Motion moves down skeletal hierarchy

 But there are feedback mechanisms
 Eyes track a fixed object while body moves

 Foot stays still on ground while walking

 Hand picks up cup from table

 This is “inverse kinematics”
 Motion moves back up skeletal hierarchy

54

Single Bone IK

 Orient a bone in given direction
 Eyeballs

 Cameras

 Find desired aim vector

 Find current aim vector

 Find rotation from one to the other
 Cross-product gives axis

 Dot-product gives angle

 Transform object by that rotation

55

Multi-Bone IK

 One bone must get to a target position

 Bone is called the “end effector”

 Can move some or all of its parents

 May be told which it should move first

 Move elbow before moving shoulders

 May be given joint constraints

 Cannot bend elbow backwards

56

Cyclic Coordinate Descent

 Simple type of multi-bone IK

 Iterative

 Can be slow

 May not find best solution

 May not find any solution in complex cases

 But it is simple and versatile

 No precalculation or preprocessing needed

57

Cyclic Coordinate Descent (2)

 Start at end effector

 Go up skeleton to next joint

 Move (usually rotate) joint to minimize
distance between end effector and target

 Continue up skeleton one joint at a time

 If at root bone, start at end effector again

 Stop when end effector is “close enough”

 Or hit iteration count limit

58

Cyclic Coordinate Descent (3)

 May take a lot of iterations

 Especially when joints are nearly
straight and solution needs them bent

 e.g. a walking leg bending to go up a step

 50 iterations is not uncommon!

 May not find the “right” answer

 Knee can try to bend in strange directions

59

Two-Bone IK

 Direct method, not iterative

 Always finds correct solution
 If one exists

 Allows simple constraints
 Knees, elbows

 Restricted to two rigid bones with a rotation
joint between them
 Knees, elbows!

 Can be used in a cyclic coordinate descent

60

Two-Bone IK (2)

 Three joints must stay in user-specified plane
 e.g. knee may not move sideways

 Reduces 3D problem to a 2D one

 Both bones must remain same length

 Therefore, middle joint is at intersection of
two circles

 Pick nearest solution to current pose

 Or one solution is disallowed
 Knees or elbows cannot bend backwards

61

Two-Bone IK (3)

Allowed
elbow

position

Shoulder

Wrist

Disallowed
elbow

position

62

IK by Interpolation

 Animator supplies multiple poses

 Each pose has a reference direction
 e.g. direction of aim of gun

 Game has a direction to aim in

 Blend poses together to achieve it

 Source poses can be realistic
 As long as interpolation makes sense

 Result looks far better than algorithmic IK with
simple joint limits

63

IK by Interpolation (2)

 Result aim point is inexact

 Blending two poses on complex skeletons
does not give linear blend result

 Can iterate towards correct aim

 Can tweak aim with algorithmic IK

 But then need to fix up hands, eyes, head

 Can get rifle moving through body

64

Attachments

 e.g. character holding a gun

 Gun is a separate mesh

 Attachment is bone in character’s skeleton

 Represents root bone of gun

 Animate character

 Transform attachment bone to world space

 Move gun mesh to that pos+orn

65

Attachments (2)

 e.g. person is hanging off bridge

 Attachment point is a bone in hand

 As with the gun example

 But here the person moves, not the bridge

 Find delta from root bone to attachment bone

 Find world transform of grip point on bridge

 Multiply by inverse of delta

 Finds position of root to keep hand gripping

66

Collision Detection

 Most games just use bounding volume

 Some need perfect triangle collision
 Slow to test every triangle every frame

 Precalculate bounding box of each bone
 Transform by world pose transform

 Finds world-space bounding box

 Test to see if bbox was hit
 If it did, test the tris this bone influences

67

Conclusions

 Use quaternions
 Matrices are too big, Eulers are too evil

 Memory use for animations is huge
 Use non-uniform spline curves

 Ability to scrub anims is important

 Multiple blending techniques
 Different methods for different places

 Blend graph simplifies code

68

Conclusions (2)

 Motion extraction is tricky but essential
 Always running on all instances in world

 Trade off between cheap & accurate

 Use Synthetic Root Bone for precise control

 Deformation is really part of rendering
 Use graphics hardware where possible

 IK is much more than just IK algorithms
 Interaction between algorithms is key

