
Chapter 5.3
Artificial Intelligence:
Agents, Architecture, and Techniques

2

Artificial Intelligence

 Intelligence embodied in a man-made
device

 Human level AI still unobtainable

3

Game Artificial Intelligence:
What is considered Game AI?

 Is it any NPC behavior?

 A single “if” statement?

 Scripted behavior?

 Pathfinding?

 Animation selection?

 Automatically generated environment?

 Best shot at a definition of game AI?

4

Possible Game AI
Definition

Inclusive view of game AI:

“Game AI is anything that contributes to the
perceived intelligence of an entity,
regardless of what’s under the hood.”

5

Goals of an
AI Game Programmer

Different than academic or defense industry

1. AI must be intelligent, yet purposely flawed

2. AI must have no unintended weaknesses

3. AI must perform within the constraints

4. AI must be configurable by game designers
or players

5. AI must not keep the game from shipping

6

Specialization of
Game AI Developer

 No one-size fits all solution to game AI
 Results in dramatic specialization

 Strategy Games
 Battlefield analysis
 Long term planning and strategy

 First-Person Shooter Games
 One-on-one tactical analysis
 Intelligent movement at footstep level

 Real-Time Strategy games the most
demanding, with as many as three full-time
AI game programmers

7

Game Agents

 May act as an
 Opponent

 Ally

 Neutral character

 Continually loops through the

Sense-Think-Act cycle
 Optional learning or remembering step

8

Sense-Think-Act Cycle:
Sensing

 Agent can have access to perfect
information of the game world
 May be expensive/difficult to tease out

useful info

 Game World Information
 Complete terrain layout

 Location and state of every game object

 Location and state of player

 But isn’t this cheating???

9

Sensing:
Enforcing Limitations

 Human limitations?

 Limitations such as
 Not knowing about unexplored areas

 Not seeing through walls

 Not knowing location or state of player

 Can only know about things seen,
heard, or told about

 Must create a sensing model

10

Sensing:
Human Vision Model for Agents

 Get a list of all objects or agents; for each:

1. Is it within the viewing distance of the agent?

 How far can the agent see?

 What does the code look like?

2. Is it within the viewing angle of the agent?

 What is the agent’s viewing angle?

 What does the code look like?

3. Is it unobscured by the environment?

 Most expensive test, so it is purposely last

 What does the code look like?

11

Sensing:
Vision Model

 Isn’t vision more than just detecting the
existence of objects?

 What about recognizing interesting
terrain features?

 What would be interesting to an agent?

12

Sensing:
Human Hearing Model

 Humans can hear sounds
 Can recognize sounds

 Knows what emits each sound

 Can sense volume
 Indicates distance of sound

 Can sense pitch
 Sounds muffled through walls have more bass

 Can sense location
 Where sound is coming from

13

Sensing:
Modeling Hearing

 How do you model hearing efficiently?

 Do you model how sounds reflect off every
surface?

 How should an agent know about sounds?

14

Sensing:
Modeling Hearing Efficiently

 Event-based approach

 When sound is emitted, it alerts interested
agents

 Use distance and zones to determine
how far sound can travel

15

Sensing:
Communication

 Agents might talk amongst themselves!

 Guards might alert other guards

 Agents witness player location and spread
the word

 Model sensed knowledge through
communication

 Event-driven when agents within vicinity of
each other

16

Sensing:
Reaction Times

 Agents shouldn’t see, hear,
communicate instantaneously

 Players notice!

 Build in artificial reaction times

 Vision: ¼ to ½ second

 Hearing: ¼ to ½ second

 Communication: > 2 seconds

17

Sense-Think-Act Cycle:
Thinking

 Sensed information gathered

 Must process sensed information

 Two primary methods

 Process using pre-coded expert knowledge

 Use search to find an optimal solution

18

Thinking:
Expert Knowledge

 Many different systems
 Finite-state machines
 Production systems
 Decision trees
 Logical inference

 Encoding expert knowledge is appealing
because it’s relatively easy
 Can ask just the right questions
 As simple as if-then statements

 Problems with expert knowledge
 Not very scalable

19

Thinking:
Search

 Employs search algorithm to find an
optimal or near-optimal solution

 A* pathfinding common use of search

20

Thinking:
Machine Learning

 If imparting expert knowledge and search are
both not reasonable/possible, then machine
learning might work

 Examples:
 Reinforcement learning

 Neural networks

 Decision tree learning

 Not often used by game developers
 Why?

21

Thinking:
Flip-Flopping Decisions

 Must prevent flip-flopping of decisions

 Reaction times might help keep it from
happening every frame

 Must make a decision and stick with it

 Until situation changes enough

 Until enough time has passed

22

Sense-Think-Act Cycle:
Acting

 Sensing and thinking steps invisible to player

 Acting is how player witnesses intelligence

 Numerous agent actions, for example:
 Change locations

 Pick up object

 Play animation

 Play sound effect

 Converse with player

 Fire weapon

23

Acting:
Showing Intelligence

 Adeptness and subtlety of actions impact
perceived level of intelligence

 Enormous burden on asset generation

 Agent can only express intelligence in terms
of vocabulary of actions

 Current games have huge sets of
animations/assets

 Must use scalable solutions to make selections

24

Extra Step in Cycle:
Learning and Remembering

 Optional 4th step

 Not necessary in many games

 Agents don’t live long enough

 Game design might not desire it

25

Learning

 Remembering outcomes and
generalizing to future situations

 Simplest approach: gather statistics

 If 80% of time player attacks from left

 Then expect this likely event

 Adapts to player behavior

26

Remembering

 Remember hard facts
 Observed states, objects, or players

 For example
 Where was the player last seen?

 What weapon did the player have?

 Where did I last see a health pack?

 Memories should fade
 Helps keep memory requirements lower

 Simulates poor, imprecise, selective human
memory

27

Remembering
within the World

 All memory doesn’t need to be stored in
the agent – can be stored in the world

 For example:

 Agents get slaughtered in a certain area

 Area might begin to “smell of death”

 Agent’s path planning will avoid the area

 Simulates group memory

28

Making Agents Stupid

 Sometimes very easy to trounce player

 Make agents faster, stronger, more accurate

 Sometimes necessary to dumb down agents,
for example:

 Make shooting less accurate

 Make longer reaction times

 Engage player only one at a time

 Change locations to make self more vulnerable

29

Agent Cheating

 Players don’t like agent cheating

 When agent given unfair advantage in speed,
strength, or knowledge

 Sometimes necessary

 For highest difficultly levels

 For CPU computation reasons

 For development time reasons

 Don’t let the player catch you cheating!

 Consider letting the player know upfront

30

Finite-State Machine (FSM)

 Abstract model of computation

 Formally:

 Set of states

 A starting state

 An input vocabulary

 A transition function that maps inputs and
the current state to a next state

31

Finite-State Machine:
In Game Development

Deviate from formal definition
1. States define behaviors (containing code)

 Wander, Attack, Flee

2. Transition function divided among states
 Keeps relation clear

3. Blur between Moore and Mealy machines
 Moore (within state), Mealy (transitions)

4. Leverage randomness

5. Extra state information
 For example, health

32

 Most common game AI software pattern
 Natural correspondence between states and

behaviors

 Easy to diagram

 Easy to program

 Easy to debug

 Completely general to any problem

 Problems
 Explosion of states

 Often created with ad hoc structure

33

Finite-State Machine:
UML Diagram

Wander Attack

Flee

See Enemy

Low
 H

ea
lthN

o Enem
y

No Enemy

34

Finite-State Machine:
Approaches

 Three approaches

 Hardcoded (switch statement)

 Scripted

 Hybrid Approach

35

Finite-State Machine:
Hardcoded FSM
void RunLogic(int * state) {

switch(state)

{

case 0: //Wander

Wander();

if(SeeEnemy()) { *state = 1; }

break;

case 1: //Attack

Attack();

if(LowOnHealth()) { *state = 2; }

if(NoEnemy()) { *state = 0; }

break;

case 2: //Flee

Flee();

if(NoEnemy()) { *state = 0; }

break;

}

}

36

Finite-State Machine:
Problems with switch FSM

1. Code is ad hoc
 Language doesn’t enforce structure

2. Transitions result from polling
 Inefficient – event-driven sometimes better

3. Can’t determine 1st time state is
entered

4. Can’t be edited or specified by game
designers or players

37

Finite-State Machine:
Scripted with alternative language

AgentFSM

{

State(STATE_Wander)

OnUpdate

Execute(Wander)

if(SeeEnemy) SetState(STATE_Attack)

OnEvent(AttackedByEnemy)

SetState(Attack)

State(STATE_Attack)

OnEnter

Execute(PrepareWeapon)

OnUpdate

Execute(Attack)

if(LowOnHealth) SetState(STATE_Flee)

if(NoEnemy) SetState(STATE_Wander)

OnExit

Execute(StoreWeapon)

State(STATE_Flee)

OnUpdate

Execute(Flee)

if(NoEnemy) SetState(STATE_Wander)

}

38

Finite-State Machine:
Scripting Advantages

1. Structure enforced

2. Events can be handed as well as
polling

3. OnEnter and OnExit concept exists

4. Can be authored by game designers

 Easier learning curve than straight C/C++

39

Finite-State Machine:
Scripting Disadvantages

 Not trivial to implement

 Several months of development

 Custom compiler

 With good compile-time error feedback

 Bytecode interpreter

 With good debugging hooks and support

 Scripting languages often disliked by users

 Can never approach polish and robustness of
commercial compilers/debuggers

40

Finite-State Machine:
Hybrid Approach

 Use a class and C-style macros to approximate a
scripting language

 Allows FSM to be written completely in C++
leveraging existing compiler/debugger

 Capture important features/extensions
 OnEnter, OnExit
 Timers
 Handle events
 Consistent regulated structure
 Ability to log history
 Modular, flexible, stack-based
 Multiple FSMs, Concurrent FSMs

 Can’t be edited by designers or players

41

Finite-State Machine:
Extensions

 Many possible extensions to basic FSM

 OnEnter, OnExit

 Timers

 Global state, substates

 Stack-Based (states or entire FSMs)

 Multiple concurrent FSMs

 Messaging

42

Common Game AI Techniques

 Whirlwind tour of common techniques

43

Common AI Techniques:
A* Pathfinding

 Directed search algorithm used for
finding an optimal path through the
game world

 A* is regarded as the best

 Guaranteed to find a path if one exists

 Will find the optimal path

 Very efficient and fast

44

Common AI Techniques:
Command Hierarchy

 Strategy for dealing with decisions at
different levels

 From the general down to the foot soldier

 Modeled after military hierarchies

 General directs high-level strategy

 Foot soldier concentrates on combat

45

Common AI Techniques:
Dead Reckoning

 Method for predicting object’s future
position based on current position,
velocity and acceleration

 Works well since movement is generally
close to a straight line over short time
periods

 Can also give guidance to how far
object could have moved

46

Common AI Techniques:
Emergent Behavior

 Behavior that wasn’t explicitly
programmed

 Emerges from the interaction of simpler
behaviors or rules

47

Common AI Techniques:
Flocking

 Example of emergent behavior
 Simulates flocking birds, schooling fish

 Developed by Craig Reynolds
 1987 SIGGRAPH paper

 Three classic rules
1. Separation – avoid local flockmates

2. Alignment – steer toward average heading

3. Cohesion – steer toward average position

48

Common AI Techniques:
Formations

 Group movement technique

 Mimics military formations

 Similar to flocking, but actually distinct

 Each unit guided toward formation
position

 Flocking doesn’t dictate goal positions

49

Common AI Techniques:
Influence Mapping

 Method for viewing/abstracting distribution of
power within game world

 Typically 2D grid superimposed on land

 Unit influence is summed into each grid cell

 Unit influences neighboring cells with falloff

 Facilitates decisions

 Can identify the “front” of the battle

 Can identify unguarded areas

50

Common AI Techniques:
Level-of-Detail AI

 Optimization technique like graphical LOD

 Only perform AI computations if player will
notice

 For example
 Only compute detailed paths for visible agents

 Off-screen agents don’t think as often

51

Common AI Techniques:
Manager Task Assignment

 Manager organizes cooperation
between agents

 Manager may be invisible in game

 Avoids complicated negotiation and
communication between agents

 Manager identifies important tasks and
assigns them to agents

52

Common AI Techniques:
Obstacle Avoidance

 Paths generated from pathfinding
algorithm consider only static terrain,
not moving obstacles

 Given a path, agent must still avoid
moving obstacles

 Requires trajectory prediction

 Requires various steering behaviors

53

Common AI Techniques:
Scripting

 Scripting specifies game data or logic outside
of the game’s source language

 Scripting influence spectrum

Level 0: Everything hardcoded

Level 1: Data in files specify stats/locations

Level 2: Scripted cut-scenes (non-interactive)

Level 3: Lightweight logic, like trigger system

Level 4: Heavy logic in scripts

Level 5: Everything coded in scripts

54

Common AI Techniques:
Scripting Pros and Cons

 Pros
 Scripts changed without recompiling game

 Designers empowered

 Players can tinker with scripts

 Cons
 More difficult to debug

 Nonprogrammers required to program

 Time commitment for tools

55

Common AI Techniques:
State Machine

 Most common game AI software pattern

 Set of states and transitions, with only one
state active at a time

 Easy to program, debug, understand

56

Common AI Techniques:
Stack-Based State Machine

 Also referred to as push-down automata

 Remembers past states

 Allows for diversions, later returning to
previous behaviors

57

Common AI Techniques:
Subsumption Architecture

 Popularized by the work of Rodney Brooks

 Separates behaviors into concurrently running
finite-state machines

 Lower layers
 Rudimentary behaviors (like obstacle avoidance)

 Higher layers
 Goal determination and goal seeking

 Lower layers have priority
 System stays robust

58

Common AI Techniques:
Terrain Analysis

 Analyzes world terrain to identify
strategic locations

 Identify
 Resources

 Choke points

 Ambush points

 Sniper points

 Cover points

59

Common AI Techniques:
Trigger System

 Highly specialized scripting system

 Uses if/then rules
 If condition, then response

 Simple for designers/players to
understand and create

 More robust than general scripting

 Tool development simpler than general
scripting

60

Promising AI Techniques

 Show potential for future

 Generally not used for games

 May not be well known

 May be hard to understand

 May have limited use

 May require too much development time

 May require too many resources

61

Promising AI Techniques:
Bayesian Networks

 Performs humanlike reasoning when
faced with uncertainty

 Potential for modeling what an AI
should know about the player
 Alternative to cheating

 RTS Example
 AI can infer existence or nonexistence of

player build units

62

Promising AI Techniques:
Blackboard Architecture

 Complex problem is posted on a shared
communication space

 Agents propose solutions

 Solutions scored and selected

 Continues until problem is solved

 Alternatively, use concept to facilitate
communication and cooperation

63

Promising AI Techniques:
Decision Tree Learning

 Constructs a decision tree based on
observed measurements from game
world

 Best known game use: Black & White

 Creature would learn and form “opinions”

 Learned what to eat in the world based on
feedback from the player and world

64

Promising AI Techniques:
Filtered Randomness

 Filters randomness so that it appears random
to players over short term

 Removes undesirable events
 Like coin coming up heads 8 times in a row

 Statistical randomness is largely preserved
without gross peculiarities

 Example:
 In an FPS, opponents should randomly spawn

from different locations (and never spawn from
the same location more than 2 times in a row).

65

Promising AI Techniques:
Fuzzy Logic

 Extension of classical logic

 In classical crisp set theory, an object
either does or doesn’t belong to a set

 In fuzzy set theory, an object can have
continuous varying degrees of
membership in fuzzy sets

66

Promising AI Techniques:
Genetic Algorithms

 Technique for search and optimization that
uses evolutionary principles

 Good at finding a solution in complex or
poorly understood search spaces

 Typically done offline before game ships

 Example:

 Game may have many settings for the AI, but
interaction between settings makes it hard to find
an optimal combination

67

Promising AI Techniques:
N-Gram Statistical Prediction

 Technique to predict next value in a
sequence

 In the sequence 18181810181, it would
predict 8 as being the next value

 Example

 In street fighting game, player just did Low
Kick followed by Low Punch

 Predict their next move and expect it

68

Promising AI Techniques:
Neural Networks

 Complex non-linear functions that relate
one or more inputs to an output

 Must be trained with numerous
examples

 Training is computationally expensive
making them unsuited for in-game learning

 Training can take place before game ships

 Once fixed, extremely cheap to compute

69

Promising AI Techniques:
Perceptrons

 Single layer neural network

 Simpler and easier to work with than
multi-layer neural network

 Perceptrons get “stimulated” enough to
either fire or not fire

 Simple yes/no output

70

Promising AI Techniques:
Perceptrons (2)

 Game example: Black & White

 Creature used perceptron for hunger

 Three inputs: low energy, tasty food, and
unhappiness

 If creature ate and received positive or
negative reinforcement, then perceptron
weights were modified

 Results in learning

71

Promising AI Techniques:
Planning

 Planning is a search to find a series of actions
that change the current world state into a
desired world state

 Increasingly desirable as game worlds
become more rich and complex

 Requires
 Good planning algorithm

 Good world representation

 Appropriate set of actions

72

Promising AI Techniques:
Player Modeling

 Build a profile of the player’s behavior

 Continuously refine during gameplay

 Accumulate statistics and events

 Player model then used to adapt the AI

 Make the game easier

 Make the game harder

73

Promising AI Techniques:
Production Systems

 Formal rule-based system

 Database of rules

 Database of facts

 Inference engine to decide which rules trigger –
resolves conflicts between rules

 Example

 Soar used experiment with Quake 2 bots

 Upwards of 800 rules for competent opponent

74

Promising AI Techniques:
Reinforcement Learning

 Machine learning technique

 Discovers solutions through trial and error

 Must reward and punish at appropriate
times

 Can solve difficult or complex problems like
physical control problems

 Useful when AI’s effects are uncertain
or delayed

75

Promising AI Techniques:
Reputation System

 Models player’s reputation within the game
world

 Agents learn new facts by watching player or
from gossip from other agents

 Based on what an agent knows
 Might be friendly toward player

 Might be hostile toward player

 Affords new gameplay opportunities
 “Play nice OR make sure there are no witnesses”

76

Promising AI Techniques:
Smart Terrain

 Put intelligence into inanimate objects

 Agent asks object how to use it

 Agents can use objects for which they weren’t
originally programmed for

 Allows for expansion packs or user created
objects, like in The Sims

 Enlightened by Affordance Theory

 Objects by their very design afford a very specific
type of interaction

77

Promising AI Techniques:
Speech Recognition

 Players can speak into microphone to
control some aspect of gameplay

 Limited recognition means only simple
commands possible

 Problems with different accents,
different genders, different ages (child
vs adult)

78

Promising AI Techniques:
Text-to-Speech

 Turns ordinary text into synthesized speech

 Cheaper than hiring voice actors

 Quality of speech is still a problem

 Not particularly natural sounding

 Intonation problems

 Algorithms not good at “voice acting”

 Large disc capacities make recording human
voices not that big a problem

 No need to resort to worse sounding solution

79

Promising AI Techniques:
Weakness Modification Learning

 General strategy to keep the AI from losing to
the player in the same way every time

 Two main steps

1. Record a key gameplay state that precedes a
failure

2. Recognize that state in the future and change
something about the AI behavior

 AI might not win more often or act more intelligently,
but won’t lose in the same way every time

 Keeps “history from repeating itself”

