
Chapter 5.3
Artificial Intelligence:
Agents, Architecture, and Techniques



2

Artificial Intelligence

 Intelligence embodied in a man-made 
device

 Human level AI still unobtainable



3

Game Artificial Intelligence:
What is considered Game AI?

 Is it any NPC behavior?

 A single “if” statement?

 Scripted behavior?

 Pathfinding?

 Animation selection?

 Automatically generated environment?

 Best shot at a definition of game AI?



4

Possible Game AI
Definition

Inclusive view of game AI:

“Game AI is anything that contributes to the 
perceived intelligence of an entity, 
regardless of what’s under the hood.”



5

Goals of an
AI Game Programmer

Different than academic or defense industry

1. AI must be intelligent, yet purposely flawed

2. AI must have no unintended weaknesses

3. AI must perform within the constraints

4. AI must be configurable by game designers 
or players

5. AI must not keep the game from shipping



6

Specialization of
Game AI Developer

 No one-size fits all solution to game AI
 Results in dramatic specialization 

 Strategy Games
 Battlefield analysis
 Long term planning and strategy

 First-Person Shooter Games
 One-on-one tactical analysis
 Intelligent movement at footstep level

 Real-Time Strategy games the most 
demanding, with as many as three full-time 
AI game programmers



7

Game Agents

 May act as an
 Opponent

 Ally

 Neutral character

 Continually loops through the 

Sense-Think-Act cycle
 Optional learning or remembering step



8

Sense-Think-Act Cycle:
Sensing

 Agent can have access to perfect 
information of the game world
 May be expensive/difficult to tease out 

useful info

 Game World Information
 Complete terrain layout

 Location and state of every game object

 Location and state of player

 But isn’t this cheating???



9

Sensing:
Enforcing Limitations

 Human limitations?

 Limitations such as
 Not knowing about unexplored areas

 Not seeing through walls

 Not knowing location or state of player

 Can only know about things seen, 
heard, or told about

 Must create a sensing model



10

Sensing:
Human Vision Model for Agents

 Get a list of all objects or agents; for each:

1. Is it within the viewing distance of the agent?

 How far can the agent see?

 What does the code look like?

2. Is it within the viewing angle of the agent?

 What is the agent’s viewing angle?

 What does the code look like?

3. Is it unobscured by the environment?

 Most expensive test, so it is purposely last

 What does the code look like?



11

Sensing:
Vision Model

 Isn’t vision more than just detecting the 
existence of objects?

 What about recognizing interesting 
terrain features?

 What would be interesting to an agent?



12

Sensing:
Human Hearing Model

 Humans can hear sounds
 Can recognize sounds

 Knows what emits each sound

 Can sense volume
 Indicates distance of sound

 Can sense pitch
 Sounds muffled through walls have more bass

 Can sense location
 Where sound is coming from



13

Sensing:
Modeling Hearing

 How do you model hearing efficiently?

 Do you model how sounds reflect off every 
surface?

 How should an agent know about sounds?



14

Sensing:
Modeling Hearing Efficiently

 Event-based approach

 When sound is emitted, it alerts interested 
agents

 Use distance and zones to determine 
how far sound can travel



15

Sensing:
Communication

 Agents might talk amongst themselves!

 Guards might alert other guards

 Agents witness player location and spread 
the word

 Model sensed knowledge through 
communication

 Event-driven when agents within vicinity of 
each other



16

Sensing:
Reaction Times

 Agents shouldn’t see, hear, 
communicate instantaneously

 Players notice!

 Build in artificial reaction times

 Vision: ¼ to ½ second

 Hearing: ¼ to ½ second

 Communication: > 2 seconds



17

Sense-Think-Act Cycle: 
Thinking

 Sensed information gathered

 Must process sensed information

 Two primary methods

 Process using pre-coded expert knowledge

 Use search to find an optimal solution



18

Thinking:
Expert Knowledge

 Many different systems
 Finite-state machines
 Production systems
 Decision trees
 Logical inference

 Encoding expert knowledge is appealing 
because it’s relatively easy
 Can ask just the right questions
 As simple as if-then statements

 Problems with expert knowledge
 Not very scalable



19

Thinking:
Search

 Employs search algorithm to find an 
optimal or near-optimal solution

 A* pathfinding common use of search



20

Thinking:
Machine Learning

 If imparting expert knowledge and search are 
both not reasonable/possible, then machine 
learning might work

 Examples:
 Reinforcement learning

 Neural networks

 Decision tree learning

 Not often used by game developers
 Why?



21

Thinking:
Flip-Flopping Decisions

 Must prevent flip-flopping of decisions

 Reaction times might help keep it from 
happening every frame

 Must make a decision and stick with it

 Until situation changes enough

 Until enough time has passed



22

Sense-Think-Act Cycle:
Acting

 Sensing and thinking steps invisible to player

 Acting is how player witnesses intelligence

 Numerous agent actions, for example:
 Change locations

 Pick up object

 Play animation

 Play sound effect

 Converse with player

 Fire weapon



23

Acting:
Showing Intelligence

 Adeptness and subtlety of actions impact 
perceived level of intelligence

 Enormous burden on asset generation

 Agent can only express intelligence in terms 
of vocabulary of actions

 Current games have huge sets of 
animations/assets

 Must use scalable solutions to make selections



24

Extra Step in Cycle:
Learning and Remembering

 Optional 4th step

 Not necessary in many games

 Agents don’t live long enough

 Game design might not desire it



25

Learning

 Remembering outcomes and 
generalizing to future situations

 Simplest approach: gather statistics

 If 80% of time player attacks from left

 Then expect this likely event

 Adapts to player behavior



26

Remembering

 Remember hard facts
 Observed states, objects, or players

 For example
 Where was the player last seen?

 What weapon did the player have?

 Where did I last see a health pack?

 Memories should fade
 Helps keep memory requirements lower

 Simulates poor, imprecise, selective human 
memory



27

Remembering
within the World

 All memory doesn’t need to be stored in 
the agent – can be stored in the world

 For example:

 Agents get slaughtered in a certain area

 Area might begin to “smell of death”

 Agent’s path planning will avoid the area

 Simulates group memory



28

Making Agents Stupid

 Sometimes very easy to trounce player

 Make agents faster, stronger, more accurate

 Sometimes necessary to dumb down agents, 
for example:

 Make shooting less accurate

 Make longer reaction times

 Engage player only one at a time

 Change locations to make self more vulnerable



29

Agent Cheating

 Players don’t like agent cheating

 When agent given unfair advantage in speed, 
strength, or knowledge

 Sometimes necessary

 For highest difficultly levels

 For CPU computation reasons

 For development time reasons

 Don’t let the player catch you cheating!

 Consider letting the player know upfront



30

Finite-State Machine (FSM)

 Abstract model of computation

 Formally:

 Set of states

 A starting state

 An input vocabulary

 A transition function that maps inputs and 
the current state to a next state



31

Finite-State Machine:
In Game Development

Deviate from formal definition
1. States define behaviors (containing code)

 Wander, Attack, Flee

2. Transition function divided among states
 Keeps relation clear

3. Blur between Moore and Mealy machines
 Moore (within state), Mealy (transitions)

4. Leverage randomness

5. Extra state information
 For example, health



32

 Most common game AI software pattern
 Natural correspondence between states and 

behaviors

 Easy to diagram

 Easy to program

 Easy to debug

 Completely general to any problem

 Problems
 Explosion of states

 Often created with ad hoc structure



33

Finite-State Machine:
UML Diagram

Wander Attack

Flee

See Enemy

Low
 H

ea
lthN

o Enem
y

No Enemy



34

Finite-State Machine:
Approaches

 Three approaches

 Hardcoded (switch statement)

 Scripted

 Hybrid Approach



35

Finite-State Machine: 
Hardcoded FSM
void RunLogic( int * state ) {

switch( state )

{

case 0:  //Wander

Wander();

if( SeeEnemy() )    { *state = 1; }

break;

case 1:  //Attack

Attack();

if( LowOnHealth() ) { *state = 2; }

if( NoEnemy() )     { *state = 0; }

break;

case 2:  //Flee

Flee();

if( NoEnemy() )     { *state = 0; }        

break;

}

}



36

Finite-State Machine: 
Problems with switch FSM

1. Code is ad hoc
 Language doesn’t enforce structure

2. Transitions result from polling
 Inefficient – event-driven sometimes better

3. Can’t determine 1st time state is 
entered

4. Can’t be edited or specified by game 
designers or players



37

Finite-State Machine:
Scripted with alternative language

AgentFSM

{

State( STATE_Wander )

OnUpdate

Execute( Wander )

if( SeeEnemy )    SetState( STATE_Attack )

OnEvent( AttackedByEnemy )

SetState( Attack )

State( STATE_Attack )

OnEnter

Execute( PrepareWeapon )

OnUpdate

Execute( Attack )

if( LowOnHealth ) SetState( STATE_Flee )

if( NoEnemy )     SetState( STATE_Wander )

OnExit

Execute( StoreWeapon )

State( STATE_Flee )

OnUpdate

Execute( Flee )

if( NoEnemy )     SetState( STATE_Wander )

}



38

Finite-State Machine:
Scripting Advantages

1. Structure enforced

2. Events can be handed as well as 
polling

3. OnEnter and OnExit concept exists

4. Can be authored by game designers

 Easier learning curve than straight C/C++



39

Finite-State Machine:
Scripting Disadvantages

 Not trivial to implement

 Several months of development

 Custom compiler

 With good compile-time error feedback

 Bytecode interpreter

 With good debugging hooks and support

 Scripting languages often disliked by users

 Can never approach polish and robustness of 
commercial compilers/debuggers



40

Finite-State Machine:
Hybrid Approach

 Use a class and C-style macros to approximate a 
scripting language

 Allows FSM to be written completely in C++ 
leveraging existing compiler/debugger

 Capture important features/extensions
 OnEnter, OnExit
 Timers
 Handle events
 Consistent regulated structure
 Ability to log history
 Modular, flexible, stack-based
 Multiple FSMs, Concurrent FSMs

 Can’t be edited by designers or players



41

Finite-State Machine:
Extensions

 Many possible extensions to basic FSM

 OnEnter, OnExit

 Timers

 Global state, substates

 Stack-Based (states or entire FSMs)

 Multiple concurrent FSMs

 Messaging



42

Common Game AI Techniques

 Whirlwind tour of common techniques



43

Common AI Techniques:
A* Pathfinding

 Directed search algorithm used for 
finding an optimal path through the 
game world

 A* is regarded as the best

 Guaranteed to find a path if one exists

 Will find the optimal path

 Very efficient and fast



44

Common AI Techniques:
Command Hierarchy

 Strategy for dealing with decisions at 
different levels

 From the general down to the foot soldier

 Modeled after military hierarchies

 General directs high-level strategy

 Foot soldier concentrates on combat



45

Common AI Techniques:
Dead Reckoning

 Method for predicting object’s future 
position based on current position, 
velocity and acceleration

 Works well since movement is generally 
close to a straight line over short time 
periods

 Can also give guidance to how far 
object could have moved



46

Common AI Techniques:
Emergent Behavior

 Behavior that wasn’t explicitly 
programmed

 Emerges from the interaction of simpler 
behaviors or rules



47

Common AI Techniques:
Flocking

 Example of emergent behavior
 Simulates flocking birds, schooling fish

 Developed by Craig Reynolds
 1987 SIGGRAPH paper

 Three classic rules
1. Separation – avoid local flockmates

2. Alignment – steer toward average heading

3. Cohesion – steer toward average position



48

Common AI Techniques:
Formations

 Group movement technique

 Mimics military formations

 Similar to flocking, but actually distinct

 Each unit guided toward formation 
position

 Flocking doesn’t dictate goal positions



49

Common AI Techniques:
Influence Mapping

 Method for viewing/abstracting distribution of 
power within game world

 Typically 2D grid superimposed on land

 Unit influence is summed into each grid cell

 Unit influences neighboring cells with falloff

 Facilitates decisions

 Can identify the “front” of the battle 

 Can identify unguarded areas



50

Common AI Techniques:
Level-of-Detail AI

 Optimization technique like graphical LOD

 Only perform AI computations if player will 
notice

 For example
 Only compute detailed paths for visible agents

 Off-screen agents don’t think as often



51

Common AI Techniques:
Manager Task Assignment

 Manager organizes cooperation 
between agents

 Manager may be invisible in game

 Avoids complicated negotiation and 
communication between agents

 Manager identifies important tasks and 
assigns them to agents



52

Common AI Techniques:
Obstacle Avoidance

 Paths generated from pathfinding 
algorithm consider only static terrain, 
not moving obstacles

 Given a path, agent must still avoid 
moving obstacles

 Requires trajectory prediction

 Requires various steering behaviors



53

Common AI Techniques:
Scripting

 Scripting specifies game data or logic outside 
of the game’s source language

 Scripting influence spectrum

Level 0: Everything hardcoded

Level 1: Data in files specify stats/locations

Level 2: Scripted cut-scenes (non-interactive)

Level 3: Lightweight logic, like trigger system

Level 4: Heavy logic in scripts

Level 5: Everything coded in scripts



54

Common AI Techniques:
Scripting Pros and Cons

 Pros
 Scripts changed without recompiling game

 Designers empowered

 Players can tinker with scripts

 Cons
 More difficult to debug

 Nonprogrammers required to program

 Time commitment for tools



55

Common AI Techniques:
State Machine

 Most common game AI software pattern

 Set of states and transitions, with only one 
state active at a time

 Easy to program, debug, understand



56

Common AI Techniques:
Stack-Based State Machine

 Also referred to as push-down automata

 Remembers past states

 Allows for diversions, later returning to 
previous behaviors



57

Common AI Techniques:
Subsumption Architecture

 Popularized by the work of Rodney Brooks 

 Separates behaviors into concurrently running 
finite-state machines

 Lower layers
 Rudimentary behaviors (like obstacle avoidance)

 Higher layers
 Goal determination and goal seeking

 Lower layers have priority
 System stays robust



58

Common AI Techniques:
Terrain Analysis

 Analyzes world terrain to identify 
strategic locations

 Identify
 Resources

 Choke points

 Ambush points

 Sniper points

 Cover points



59

Common AI Techniques:
Trigger System

 Highly specialized scripting system

 Uses if/then rules
 If condition, then response

 Simple for designers/players to 
understand and create

 More robust than general scripting

 Tool development simpler than general 
scripting



60

Promising AI Techniques

 Show potential for future

 Generally not used for games

 May not be well known

 May be hard to understand

 May have limited use

 May require too much development time

 May require too many resources



61

Promising AI Techniques:
Bayesian Networks

 Performs humanlike reasoning when 
faced with uncertainty

 Potential for modeling what an AI 
should know about the player
 Alternative to cheating

 RTS Example
 AI can infer existence or nonexistence of 

player build units



62

Promising AI Techniques:
Blackboard Architecture

 Complex problem is posted on a shared 
communication space

 Agents propose solutions

 Solutions scored and selected

 Continues until problem is solved

 Alternatively, use concept to facilitate 
communication and cooperation



63

Promising AI Techniques:
Decision Tree Learning

 Constructs a decision tree based on 
observed measurements from game 
world

 Best known game use: Black & White

 Creature would learn and form “opinions”

 Learned what to eat in the world based on 
feedback from the player and world



64

Promising AI Techniques:
Filtered Randomness

 Filters randomness so that it appears random 
to players over short term

 Removes undesirable events
 Like coin coming up heads 8 times in a row

 Statistical randomness is largely preserved 
without gross peculiarities

 Example:
 In an FPS, opponents should randomly spawn 

from different locations (and never spawn from 
the same location more than 2 times in a row).



65

Promising AI Techniques:
Fuzzy Logic

 Extension of classical logic

 In classical crisp set theory, an object 
either does or doesn’t belong to a set

 In fuzzy set theory, an object can have 
continuous varying degrees of 
membership in fuzzy sets



66

Promising AI Techniques:
Genetic Algorithms

 Technique for search and optimization that 
uses evolutionary principles

 Good at finding a solution in complex or 
poorly understood search spaces

 Typically done offline before game ships

 Example:

 Game may have many settings for the AI, but 
interaction between settings makes it hard to find 
an optimal combination



67

Promising AI Techniques:
N-Gram Statistical Prediction

 Technique to predict next value in a 
sequence

 In the sequence 18181810181, it would 
predict 8 as being the next value

 Example

 In street fighting game, player just did Low 
Kick followed by Low Punch

 Predict their next move and expect it



68

Promising AI Techniques:
Neural Networks

 Complex non-linear functions that relate 
one or more inputs to an output

 Must be trained with numerous 
examples

 Training is computationally expensive 
making them unsuited for in-game learning

 Training can take place before game ships

 Once fixed, extremely cheap to compute



69

Promising AI Techniques:
Perceptrons

 Single layer neural network

 Simpler and easier to work with than 
multi-layer neural network

 Perceptrons get “stimulated” enough to 
either fire or not fire

 Simple yes/no output



70

Promising AI Techniques:
Perceptrons (2)

 Game example: Black & White

 Creature used perceptron for hunger

 Three inputs: low energy, tasty food, and 
unhappiness

 If creature ate and received positive or 
negative reinforcement, then perceptron 
weights were modified

 Results in learning



71

Promising AI Techniques:
Planning

 Planning is a search to find a series of actions 
that change the current world state into a 
desired world state

 Increasingly desirable as game worlds 
become more rich and complex

 Requires
 Good planning algorithm

 Good world representation

 Appropriate set of actions



72

Promising AI Techniques:
Player Modeling

 Build a profile of the player’s behavior

 Continuously refine during gameplay

 Accumulate statistics and events

 Player model then used to adapt the AI

 Make the game easier

 Make the game harder



73

Promising AI Techniques:
Production Systems

 Formal rule-based system

 Database of rules

 Database of facts

 Inference engine to decide which rules trigger –
resolves conflicts between rules

 Example

 Soar used experiment with Quake 2 bots

 Upwards of 800 rules for competent opponent



74

Promising AI Techniques:
Reinforcement Learning

 Machine learning technique

 Discovers solutions through trial and error

 Must reward and punish at appropriate 
times

 Can solve difficult or complex problems like 
physical control problems

 Useful when AI’s effects are uncertain 
or delayed



75

Promising AI Techniques:
Reputation System

 Models player’s reputation within the game 
world

 Agents learn new facts by watching player or 
from gossip from other agents

 Based on what an agent knows
 Might be friendly toward player

 Might be hostile toward player

 Affords new gameplay opportunities
 “Play nice OR make sure there are no witnesses”



76

Promising AI Techniques:
Smart Terrain

 Put intelligence into inanimate objects

 Agent asks object how to use it

 Agents can use objects for which they weren’t 
originally programmed for

 Allows for expansion packs or user created 
objects, like in The Sims

 Enlightened by Affordance Theory

 Objects by their very design afford a very specific 
type of interaction



77

Promising AI Techniques:
Speech Recognition

 Players can speak into microphone to 
control some aspect of gameplay

 Limited recognition means only simple 
commands possible

 Problems with different accents, 
different genders, different ages (child 
vs adult)



78

Promising AI Techniques:
Text-to-Speech

 Turns ordinary text into synthesized speech

 Cheaper than hiring voice actors

 Quality of speech is still a problem

 Not particularly natural sounding

 Intonation problems

 Algorithms not good at “voice acting”

 Large disc capacities make recording human 
voices not that big a problem

 No need to resort to worse sounding solution



79

Promising AI Techniques:
Weakness Modification Learning

 General strategy to keep the AI from losing to 
the player in the same way every time

 Two main steps

1. Record a key gameplay state that precedes a 
failure

2. Recognize that state in the future and change 
something about the AI behavior

 AI might not win more often or act more intelligently, 
but won’t lose in the same way every time

 Keeps “history from repeating itself”


