Chapter 5.4
Artificial Intelligence: Pathfinding

Introduction

Almost every game requires pathfinding

Agents must be able to find their way
around the game world

Pathfinding is not a trivial problem

The fastest and most efficient
pathfinding techniques tend to consume
a great deal of resources

| Representing
24| the Search Space

N

Agents need to know where they can move

Search space should represent either
Clear routes that can be traversed
Or the entire walkable surface

Search space typically doesn’t represent:
Small obstacles or moving objects

Most common search space representations:
Grids
Waypoint graphs
Navigation meshes

Grids

2D grids — intuitive world representation

Works well for many games including some
3D games such as Warcraft 117

Each cell is flagged
Passable or impassable

Each object in the world can occupy
one or more cells

!z Characteristics of Grids

Fast look-up
Easy access to neighboring cells
Complete representation of the level

!a Waypoint Graph

L

A waypoint graph specifies lines/routes that
are “safe” for traversing

Each line (or link) connects exactly two
waypoints

| Characteristics
2| of Waypoint Graphs

Waypoint node can be connected to any
number of other waypoint nodes

Waypoint graph can easily represent
arbitrary 3D levels

Can incorporate auxiliary information
Such as ladders and jump pads

Incomplete representation of the level

7

Navigation Meshes

Combination of grids and waypoint graphs

Every node of a navigation mesh represents a
convex polygon (or area)
As opposed to a single position in a waypoint node

Advantage of convex polygon

Any two points inside can be connected without
crossing an edge of the polygon

Navigation mesh can be thought of as a
walkable surface

Navigation Meshes
(continued)

Characteristics of
!a Navigation Meshes

J

Complete representation of the level

Ties pathfinding and collision detection
together

Can easily be used for 2D and 3D games

10

v

A Searching for a Path

A path is a list of cells, points, or nodes that
an agent must traverse
A pathfinding algorithm finds a path

From a start position to a goal position

The following pathfinding algorithms can be
used on

Grids

Waypoint graphs

Navigation meshes

11

| Criteria for Evaluating

| Pathfinding Algorithms

Quality of final path
Resource consumption during search
CPU and memory

Whether it is a complete algorithm

A complete algorithm guarantees to find
a path if one exists

12

| Random Trace

Simple algorithm
Agent moves towards goal
If goal reached, then done

If obstacle

Trace around the obstacle clockwise or
counter-clockwise (pick randomly) until free
path towards goal

Repeat procedure until goal reached

13

g; Random Trace (continued)

How will Random Trace do on the
following maps?

o M

14

Random Trace Characteristics

Not a complete algorithm
Found paths are unlikely to be optimal
Consumes very little memory

15

%4| Understanding A*

To understand A*

First understand Breadth-First, Best-First,
and Dijkstra algorithms

These algorithms use nodes to
represent candidate paths

16

!a Understanding A*

class PlannerNode

{
public:

PlannerNode *m_pParent;

int m_cellX, m_cellY;
¥

The m_pParent member is used to chain nodes
sequentially together to represent a path

17

Understanding A*

All of the following algorithms use two lists
The open list
The closed list

Open list keeps track of promising nodes

When a node is examined from open list

Taken off open list and checked to see whether it
has reached the goal

If it has not reached the goal
Used to create additional nodes
Then placed on the closed list

18

| Overall Structure of the
ZA| Algorithms

1. Create start point node — push onto open list
2. While open list is not empty

A. Pop node from open list (call it currentNode)

B. If currentNode corresponds to goal, break from
step 2

C. Create new nodes (successors nodes) for cells
around currentNode and push them onto open list

D. Put currentNode onto closed list

19

| Breadth-First

L

Finds a path from the start to the goal by
examining the search space ply-by-ply

20

2| Breadth-First Characteristics

Exhaustive search
Systematic, but not clever

Consumes substantial amount of CPU
and memory

Guarantees to find paths that have
fewest number of nodes in them

Not necessarily the shortest distance!
Complete algorithm

21

Best-First

Uses problem specific knowledge to
speed up the search process

Head straight for the goal

Computes the distance of every node to
the goal

Uses the distance (or heuristic cost) as a
priority value to determine the next node
that should be brought out of the open list

22

!z Best-First (continued)

23

| Best-First (continued)

Situation where Best-First finds a suboptimal path

24

%4 | Best-First Characteristics

Heuristic search
Uses fewer resources than Breadth-First

Tends to find good paths
No guarantee to find most optimal path

Complete algorithm

25

Dijkstra

Disregards distance to goal
Keeps track of the cost of every path
No guessing
Computes accumulated cost paid to
reach a node from the start

Uses the cost (called the given cost) as a
priority value to determine the next node
that should be brought out of the open list

26

752 Dijkstra Characteristics

Exhaustive search

At least as resource intensive as
Breadth-First

Always finds the most optimal path
Complete algorithm

27

| A%

Uses both heuristic cost and given cost to
order the open list

Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)

28

!z A* (continued)

L

Avoids Best-First trap!

29

/ A* Characteristics

Heuristic search

On average, uses fewer resources than
Dijkstra and Breadth-First

Admissible heuristic guarantees it will find the
most optimal path

Complete algorithm

30

E Summary

L

Two key aspects of pathfinding:
Representing the search space
Searching for a path

31

/1. ‘PathPlannerApp Demo

'#PathPlannerApp |

||||||||||||||||||||||

#l@@b| IIIII ||j|l?

32

int Graph Demo

24| Waypo

: 5
-
o
=
=
t
=
7]
_=
!
o]
=y
|
=
o
o
=
=
!
=
=
E
=]
e
-]
=)
!
]
=
¢
W
=5
|
|
|

L]
S 2] £ T 0 W0 0 0 D e D2

f—
HEEE?EEEE?H?

L, L]
mnﬂr_-._rn._u....-.-._rn.nnnnu_n._l_n&

™ &
Wn.,,_r_-._rn..u.._.-.-._rn.nnu_nnr._l_n...u

s, &
mnenr_-._rn._u.._.-..._rn_u_nnurn.in&

™ &
m._l_r_-._rn._u.._.-..._u_nr_...nurn.._l_n&

-
H2234_unrunn3ﬂf3_u..

-
HEEEHEEBE?ED}

™= =
mzﬂﬁunn;ﬂulgnnrulg

o =
u._l_u_nl_u.._.-.-._lgnnrn.lg

™= =
Euﬂﬂﬂﬂ;ﬂulgﬂﬁiz
I

™ ==
) = oo
e [

33

