
Chapter 5.4
Artificial Intelligence: Pathfinding

2

Introduction

 Almost every game requires pathfinding

 Agents must be able to find their way
around the game world

 Pathfinding is not a trivial problem

 The fastest and most efficient
pathfinding techniques tend to consume
a great deal of resources

3

Representing
the Search Space

 Agents need to know where they can move
 Search space should represent either

 Clear routes that can be traversed
 Or the entire walkable surface

 Search space typically doesn’t represent:
 Small obstacles or moving objects

 Most common search space representations:
 Grids
 Waypoint graphs
 Navigation meshes

4

Grids

 2D grids – intuitive world representation

 Works well for many games including some
3D games such as Warcraft III

 Each cell is flagged

 Passable or impassable

 Each object in the world can occupy
one or more cells

5

Characteristics of Grids

 Fast look-up

 Easy access to neighboring cells

 Complete representation of the level

6

Waypoint Graph

 A waypoint graph specifies lines/routes that
are “safe” for traversing

 Each line (or link) connects exactly two
waypoints

7

Characteristics
of Waypoint Graphs

 Waypoint node can be connected to any
number of other waypoint nodes

 Waypoint graph can easily represent
arbitrary 3D levels

 Can incorporate auxiliary information

 Such as ladders and jump pads

 Incomplete representation of the level

8

Navigation Meshes

 Combination of grids and waypoint graphs

 Every node of a navigation mesh represents a
convex polygon (or area)
 As opposed to a single position in a waypoint node

 Advantage of convex polygon
 Any two points inside can be connected without

crossing an edge of the polygon

 Navigation mesh can be thought of as a
walkable surface

9

Navigation Meshes
(continued)

10

Characteristics of
Navigation Meshes

 Complete representation of the level

 Ties pathfinding and collision detection
together

 Can easily be used for 2D and 3D games

11

Searching for a Path

 A path is a list of cells, points, or nodes that
an agent must traverse

 A pathfinding algorithm finds a path
 From a start position to a goal position

 The following pathfinding algorithms can be
used on
 Grids

 Waypoint graphs

 Navigation meshes

12

Criteria for Evaluating
Pathfinding Algorithms

 Quality of final path

 Resource consumption during search

 CPU and memory

 Whether it is a complete algorithm

 A complete algorithm guarantees to find
a path if one exists

13

Random Trace

 Simple algorithm

 Agent moves towards goal

 If goal reached, then done

 If obstacle

 Trace around the obstacle clockwise or
counter-clockwise (pick randomly) until free
path towards goal

 Repeat procedure until goal reached

14

Random Trace (continued)

 How will Random Trace do on the
following maps?

15

Random Trace Characteristics

 Not a complete algorithm

 Found paths are unlikely to be optimal

 Consumes very little memory

16

Understanding A*

 To understand A*

 First understand Breadth-First, Best-First,
and Dijkstra algorithms

 These algorithms use nodes to
represent candidate paths

17

Understanding A*

class PlannerNode

{

public:

PlannerNode *m_pParent;

int m_cellX, m_cellY;

...

};

 The m_pParent member is used to chain nodes
sequentially together to represent a path

18

Understanding A*

 All of the following algorithms use two lists
 The open list
 The closed list

 Open list keeps track of promising nodes
 When a node is examined from open list

 Taken off open list and checked to see whether it
has reached the goal

 If it has not reached the goal
 Used to create additional nodes
 Then placed on the closed list

19

Overall Structure of the
Algorithms

1. Create start point node – push onto open list

2. While open list is not empty

A. Pop node from open list (call it currentNode)

B. If currentNode corresponds to goal, break from
step 2

C. Create new nodes (successors nodes) for cells
around currentNode and push them onto open list

D. Put currentNode onto closed list

20

Breadth-First

 Finds a path from the start to the goal by
examining the search space ply-by-ply

21

Breadth-First Characteristics

 Exhaustive search
 Systematic, but not clever

 Consumes substantial amount of CPU
and memory

 Guarantees to find paths that have
fewest number of nodes in them
 Not necessarily the shortest distance!

 Complete algorithm

22

Best-First

 Uses problem specific knowledge to
speed up the search process

 Head straight for the goal

 Computes the distance of every node to
the goal

 Uses the distance (or heuristic cost) as a
priority value to determine the next node
that should be brought out of the open list

23

Best-First (continued)

24

Best-First (continued)

 Situation where Best-First finds a suboptimal path

25

Best-First Characteristics

 Heuristic search

 Uses fewer resources than Breadth-First

 Tends to find good paths

 No guarantee to find most optimal path

 Complete algorithm

26

Dijkstra

 Disregards distance to goal

 Keeps track of the cost of every path

 No guessing

 Computes accumulated cost paid to
reach a node from the start

 Uses the cost (called the given cost) as a
priority value to determine the next node
that should be brought out of the open list

27

Dijkstra Characteristics

 Exhaustive search

 At least as resource intensive as
Breadth-First

 Always finds the most optimal path

 Complete algorithm

28

A*

 Uses both heuristic cost and given cost to
order the open list

 Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)

29

A* (continued)

 Avoids Best-First trap!

30

A* Characteristics

 Heuristic search

 On average, uses fewer resources than
Dijkstra and Breadth-First

 Admissible heuristic guarantees it will find the
most optimal path

 Complete algorithm

31

Summary

 Two key aspects of pathfinding:

 Representing the search space

 Searching for a path

32

PathPlannerApp Demo

33

Waypoint Graph Demo

