
Chapter 5.4
Artificial Intelligence: Pathfinding

2

Introduction

 Almost every game requires pathfinding

 Agents must be able to find their way
around the game world

 Pathfinding is not a trivial problem

 The fastest and most efficient
pathfinding techniques tend to consume
a great deal of resources

3

Representing
the Search Space

 Agents need to know where they can move
 Search space should represent either

 Clear routes that can be traversed
 Or the entire walkable surface

 Search space typically doesn’t represent:
 Small obstacles or moving objects

 Most common search space representations:
 Grids
 Waypoint graphs
 Navigation meshes

4

Grids

 2D grids – intuitive world representation

 Works well for many games including some
3D games such as Warcraft III

 Each cell is flagged

 Passable or impassable

 Each object in the world can occupy
one or more cells

5

Characteristics of Grids

 Fast look-up

 Easy access to neighboring cells

 Complete representation of the level

6

Waypoint Graph

 A waypoint graph specifies lines/routes that
are “safe” for traversing

 Each line (or link) connects exactly two
waypoints

7

Characteristics
of Waypoint Graphs

 Waypoint node can be connected to any
number of other waypoint nodes

 Waypoint graph can easily represent
arbitrary 3D levels

 Can incorporate auxiliary information

 Such as ladders and jump pads

 Incomplete representation of the level

8

Navigation Meshes

 Combination of grids and waypoint graphs

 Every node of a navigation mesh represents a
convex polygon (or area)
 As opposed to a single position in a waypoint node

 Advantage of convex polygon
 Any two points inside can be connected without

crossing an edge of the polygon

 Navigation mesh can be thought of as a
walkable surface

9

Navigation Meshes
(continued)

10

Characteristics of
Navigation Meshes

 Complete representation of the level

 Ties pathfinding and collision detection
together

 Can easily be used for 2D and 3D games

11

Searching for a Path

 A path is a list of cells, points, or nodes that
an agent must traverse

 A pathfinding algorithm finds a path
 From a start position to a goal position

 The following pathfinding algorithms can be
used on
 Grids

 Waypoint graphs

 Navigation meshes

12

Criteria for Evaluating
Pathfinding Algorithms

 Quality of final path

 Resource consumption during search

 CPU and memory

 Whether it is a complete algorithm

 A complete algorithm guarantees to find
a path if one exists

13

Random Trace

 Simple algorithm

 Agent moves towards goal

 If goal reached, then done

 If obstacle

 Trace around the obstacle clockwise or
counter-clockwise (pick randomly) until free
path towards goal

 Repeat procedure until goal reached

14

Random Trace (continued)

 How will Random Trace do on the
following maps?

15

Random Trace Characteristics

 Not a complete algorithm

 Found paths are unlikely to be optimal

 Consumes very little memory

16

Understanding A*

 To understand A*

 First understand Breadth-First, Best-First,
and Dijkstra algorithms

 These algorithms use nodes to
represent candidate paths

17

Understanding A*

class PlannerNode

{

public:

PlannerNode *m_pParent;

int m_cellX, m_cellY;

...

};

 The m_pParent member is used to chain nodes
sequentially together to represent a path

18

Understanding A*

 All of the following algorithms use two lists
 The open list
 The closed list

 Open list keeps track of promising nodes
 When a node is examined from open list

 Taken off open list and checked to see whether it
has reached the goal

 If it has not reached the goal
 Used to create additional nodes
 Then placed on the closed list

19

Overall Structure of the
Algorithms

1. Create start point node – push onto open list

2. While open list is not empty

A. Pop node from open list (call it currentNode)

B. If currentNode corresponds to goal, break from
step 2

C. Create new nodes (successors nodes) for cells
around currentNode and push them onto open list

D. Put currentNode onto closed list

20

Breadth-First

 Finds a path from the start to the goal by
examining the search space ply-by-ply

21

Breadth-First Characteristics

 Exhaustive search
 Systematic, but not clever

 Consumes substantial amount of CPU
and memory

 Guarantees to find paths that have
fewest number of nodes in them
 Not necessarily the shortest distance!

 Complete algorithm

22

Best-First

 Uses problem specific knowledge to
speed up the search process

 Head straight for the goal

 Computes the distance of every node to
the goal

 Uses the distance (or heuristic cost) as a
priority value to determine the next node
that should be brought out of the open list

23

Best-First (continued)

24

Best-First (continued)

 Situation where Best-First finds a suboptimal path

25

Best-First Characteristics

 Heuristic search

 Uses fewer resources than Breadth-First

 Tends to find good paths

 No guarantee to find most optimal path

 Complete algorithm

26

Dijkstra

 Disregards distance to goal

 Keeps track of the cost of every path

 No guessing

 Computes accumulated cost paid to
reach a node from the start

 Uses the cost (called the given cost) as a
priority value to determine the next node
that should be brought out of the open list

27

Dijkstra Characteristics

 Exhaustive search

 At least as resource intensive as
Breadth-First

 Always finds the most optimal path

 Complete algorithm

28

A*

 Uses both heuristic cost and given cost to
order the open list

 Final Cost = Given Cost + (Heuristic Cost * Heuristic Weight)

29

A* (continued)

 Avoids Best-First trap!

30

A* Characteristics

 Heuristic search

 On average, uses fewer resources than
Dijkstra and Breadth-First

 Admissible heuristic guarantees it will find the
most optimal path

 Complete algorithm

31

Summary

 Two key aspects of pathfinding:

 Representing the search space

 Searching for a path

32

PathPlannerApp Demo

33

Waypoint Graph Demo

