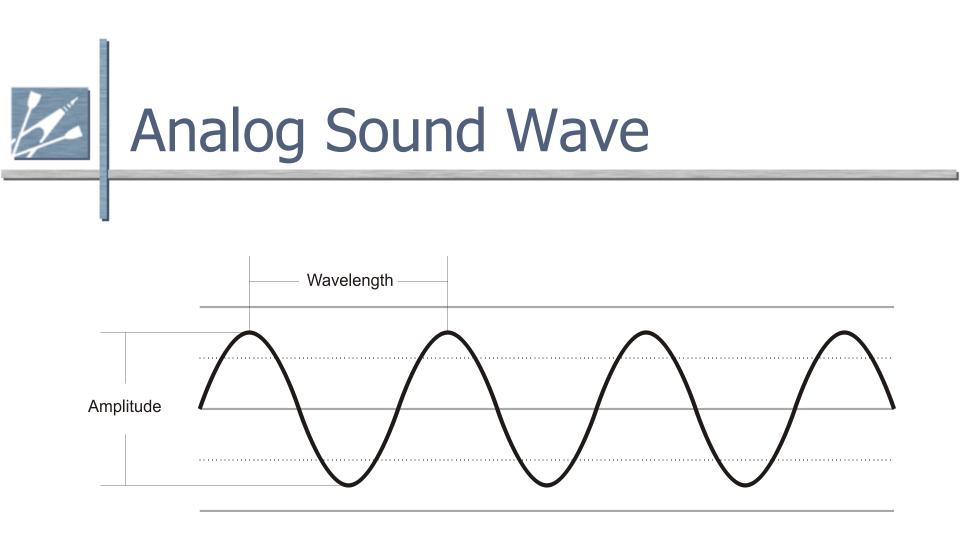
Chapter 5.5 Audio Programming

Audio Programming

Audio in games is more important than ever before


Programming Basic Audio

Most gaming hardware has similar capabilities (on similar platforms)
Mostly programming interfaces differ
Learning fundamental concepts of audio programming is important

API Choices

- DirectSound (part of DirectX API)
 - Only available on Windows platforms
- OpenAL
 - Newer API
 - Available on multiple platforms
- Proprietary APIs
 - Typically available on consoles
- 3rd Party Licensable APIs
 - Can offer broad cross-platform solutions

Basic Audio Terminology and Physics

Amplitude

Measurement of a sound wave's pressure

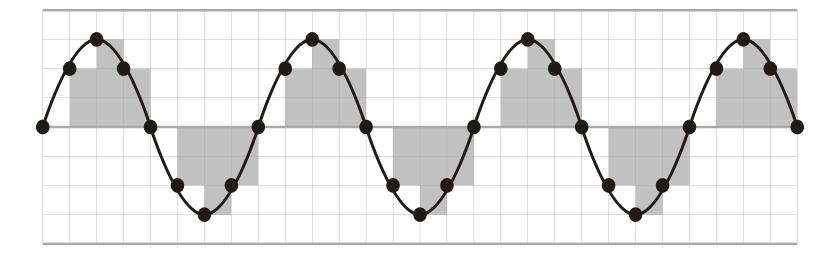
Frequency

Measurement of the interval between wave cycles, typically measured in Hertz

Pitch

The perception of frequency

Tuning


Musical distribution of frequencies over keys

Decibel

Measures sound amplitude

Digital Representation of a Sound Wave

Digital Representation of a Sound Wave

Most common technique known as sampling

- Sampling involves measuring the amplitude of the analog wave file at discrete intervals
- The frequency of sampling is known as sampling rate
- Each sample is typically stored in a value ranging from 4 to 24 bits in size
- The size of the sample value in bits is known as the 'bit depth'
- Music CDs have a sample rate and bit depth of 44.1 kHz (samples/sec) and 16 bits (sample size)

Quantization Error

Bit Depth and Signal Noise

Bit depth of sample data affects signal noise

- Signal to noise ratio = number of available bits / 1
- For example, 8-bit samples have a 256:1 SNR (~48 dB), and 16-bit samples have a 65,536:1 SNR (~96 dB)
- Decibel ratio is calculated using 10 x log₁₀ (ratio) or 8.685890 x log *e* (ratio)

h.

Sampling Frequency and Frequency Reproduction

- Sampling frequency affects range and quality of high-frequency reproduction
- Nyquist Limit
 - Frequencies up to one-half the sampling rate can be reproduced
 - Audio quality degrades as frequency approaches this limit

Modern Audio Hardware

- Samples are piped into sound "channels"
 - Often a hardware pipeline from this point
- Various operations, such as volume, pan, and pitch may be applied
- 3D sounds may apply HRTF algorithms and/or mix the sound into final output buffers.

Sound Playback Techniques

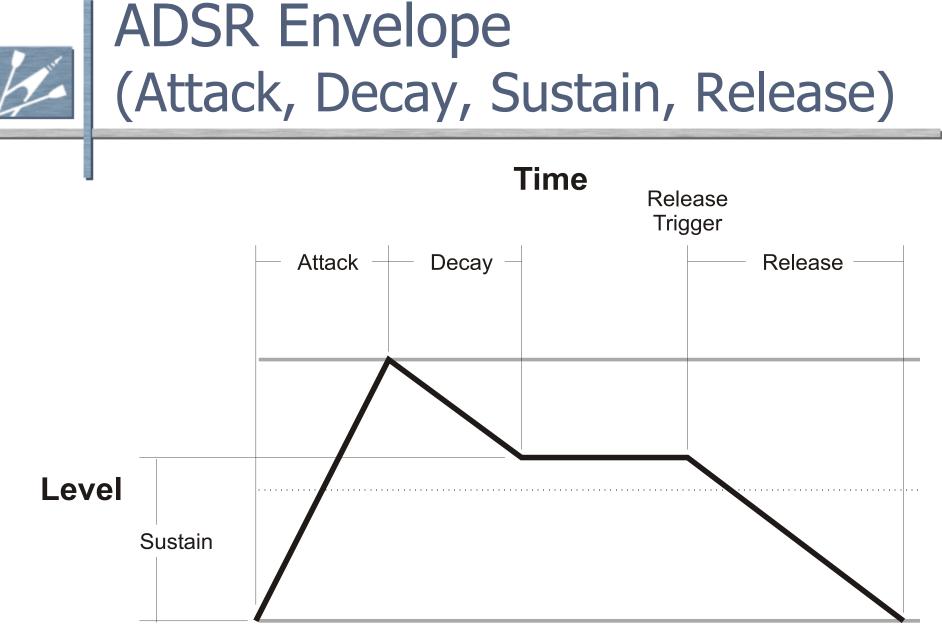
Two basic playback methods:

- 1. Play sample entirely from memory buffer
- 2. Stream data in real-time from storage medium
 - Streaming is more memory efficient for very large audio files, such as music tracks, dialogue, etc
 - Streaming systems use either a circular buffer with read-write pointers, or a double-buffering algorithm

Sample Playback and Manipulation

- Three basic operations you should know
 - Panning is the attenuation of left and right channels of a mixed sound
 - Results in spatial positioning within the aural stereo field
 - Pitch allows the adjustment of a sample's playback frequency in real-time
 - Volume control typically attenuates the volume of a sound
 - Amplification is generally never supported

h.


Compressed Audio Format

- Compressed audio formats allow sound and music to be stored more compactly
 - Bit reduction codecs generally are lightweight
 - ADPCM compression is implemented in hardware on all the major current video game console systems
 - Psycho-acoustic codecs often have better compression
 - Require substantially more computational horsepower to decode

MP3, Ogg Vorbis, Licensing & Patent Issues

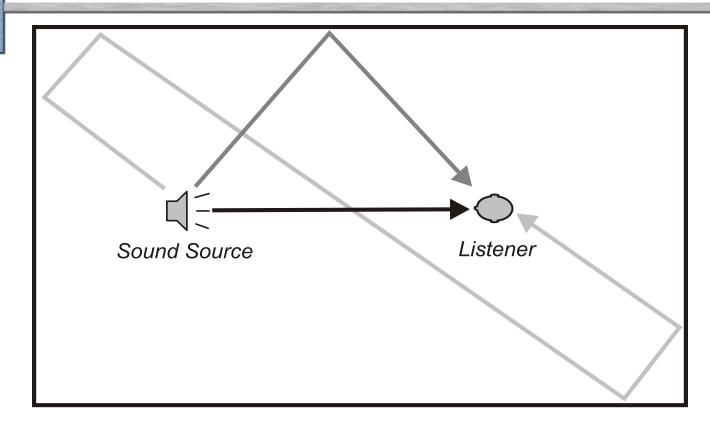
The MP3 format is patented

- Any commercial game is subject to licensing terms as determined by Fraunhofer & Thompson Multimedia, the holders of the patents
- Ogg Vorbis is similar to MP3 in many ways
 - Open source and patent-free (royalty-free)
- Be aware of patent and license restrictions when using 3rd party software

3D Audio

Two sets of data required when working in world coordinates:

- Listener Data
 - Composed of world position and orientation (virtual microphone in the world)
- Source Data
 - Composed of sound position, orientation, velocity, etc (virtual sound source in the world)



Environmental Effects

- Environmental effects nearly always implemented in hardware
- Sound transmission is categorized in three ways
 - Direct transmission
 - Early reflections (echo)
 - Late reflections (reverberation)

Sound Transmission Categories

Environmental Effects Standards

- EAX 2.0 and beyond
 - EAX 2.0 developed by Creative Labs and released as an open standard
 - EAX 3.0 and 4.0 remain proprietary Creative Labs standards
- I3DL2
 - Open standard developed by IA-SIG, similar to EAX 2.0 in functionality

Programming Music Systems

Two common music systems

- MIDI-based systems
 - (Musical Instrument Digital Interface)
- Digital audio streaming systems

(CD audio, MP3 playback, etc)

Advantages and Disadvantages of MIDI

- Actual music data size is negligible
- Easy to control, alter, and even generate in real-time
- High quality music is more difficult to compose and program
- Only effective if you can guarantee playback of a common instrument set

Other MIDI-based technologies to be aware of

- DLS (DownLoadable Sound) Format
 - A standardized format for instrument definition files
- iXMF (Interactive eXtensible Music Format)
 - New proposed standard for a container format for interactive music

Advantages / Disadvantages of Digital Audio Streams

- Superb musical reproduction is guaranteed
- Allows composers to work with any compositional techniques
- Some potential interactivity is sacrificed for expediency and musical quality
- Generally high storage requirements

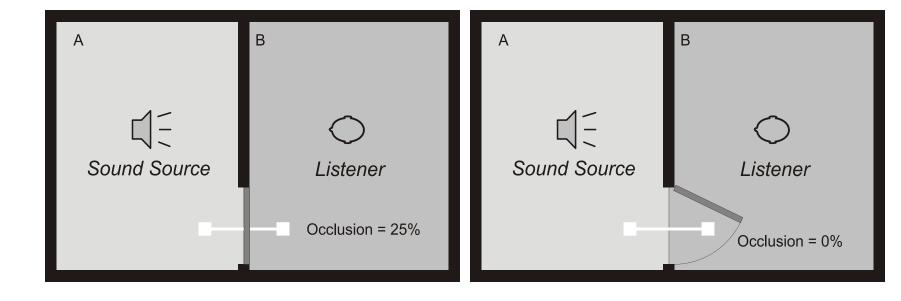
A Conceptual Interactive Music Playback System

- Divide music into small two to eight-bar chunks that we'll call segments.
- A network of transitions from segment to segment (including loops and branches) is called a *theme*.
- Playing music is now as simple as choosing a theme to play. The transition map tracks the details.

Advanced Audio Programming

- 3D Audio Environmental Effects Integration
- Audio Scripting and Engine Integration
- Lip-sync Technology
- Advanced Voice Playback
- Voice Recognition

H.


3D Audio Environmental Effects Integration

- Environmental effects should be driven by a room's shape and material composition.
 - Can determining the optimal effect settings be done automatically?
 - This may be important as game worlds become larger and more complex

3D Audio Environmental Effects Integration (cont)

- Sound occlusion and damping is a particularly difficult problem to solve
 - This is essentially a pathfinding problem for audio.
 - Doors can dynamically affect a sound's properties
 - Very few titles have even attempted a robust, general-purpose, and automated solution to these problems.

Audio Scripting and Engine Integration

- Very little audio programming should be done by general game programmers
- Game Engine should offer robust support for audio triggers and scripts
- Engine should deal with audio scripts, not "sound files"
- Why is this so important?

Audio Scripting

Many situations require much more information than can be embedded in a linear audio file

- Sound Variation
- Sound Repetition
- Complex Sound Looping
- Background Ambience

Lip-sync Technology

Lip-sync technology is a blending of audio and visual techniques to create realisticlooking speech by in-game actors.

- Simple techniques such as waveform amplitude measurement has worked previously, but...
- In future titles, it will be considered inadequate.
- Much work can still be done in this field.

Advanced Voice Playback

- Real-time spoken feedback is especially important in sports titles (simulated announcers)
- Game are reaching the limits of what current techniques (canned, prerecorded phrases combined in series) can provide.
- Again, this is an opportunity for future groundbreaking audio work.

Voice Recognition

- Spoken commands are much easier to deliver in certain situations.
- A great example of this? Squad-based tactical shooters.
- Current generation systems are still very error prone. A great opportunity for breakout audio technology.