
Mobile Game

Programming

Just that facts.

Introduction I (Devices)

 Mobile Devices (Primary Purpose):

 Gaming Devices: Nintendo DS, PSP.

 Music Devices: ZUNE, IPod.

 Cellphone Devices: Nokia, Samsung

 Web Devices: Blackberry, IPhone, PDA’s

 Line between all of these devices is

rapidly becoming blurred.

 For our purposes “mobile device” is

network enabled device you can carry.

Introduction II (Technology)

 Modern mobile devices are small computers
(simple phones == 1990 computer; iPhone 4,
1Ghz Processor, 512MB RAM).

 Signature feature of these devices is the built in
network support (complex protocol suite).

 Mobile devices (in particular “smart phones”)
driving force behind advances in wireless
communication technologies (4G = 1 Gbit/s).

 Fixed (and limited) hardware (RAM) as well as
limited input, output, and display capabilities.

Introduction III (Market)

Mobile devices have incredible installed base.

International Telecommunications Union states that:

– “Most of the world owns at least 1 mobile phone.”

– 4.6 billion subscription accounts, worldwide in

2010 (5B next year; World Pop 6.6 Billion)

– Estimated that 1.3B new phones will ship in 2010,

250-300 million of them “smart phones”.

Compare that too:

– Personal computers in the world 1-2 Billion.

– Xbox 360's in the world, 40-50 million.

Introduction IV (Latest data)

 The worldwide smartphone app market was worth $2.2

billion dollars in just the first six months of 2010.

 Worldwide mobile applications market is on track to be

worth $17.5 billion by 2012.

 Worldwide market for portable and mobile games $5.4

billion in 2008. Estimate $9.8 billion by 2012.

 In the three months ending February 2010, an average of

50.9 million mobile subscribers played at least one game

in the past month.

 ??? Apple iPhone/iPod Touch are currently expected to

comprise 24% of all portable game software sales,

including PSP and DS by 2014 ???

How games are implemented.

How Games are Implemented I

Embedded Games:

 Built into chipset or OS.

 Ships with device, rarely added after.

 Example: Snake.

SMS Games:

 Piggy back on SMS system for functionality.

 Played by sending text messages to other

phones and servers.

Compiled Games / C Games (C#, C++, Mobile-C,

Objective-C, Bionic)

 Written then compiled for specific system.

 Fast, powerful, optimized applications are possible

that directly access phone hardware.

 Different vendors create application development

platforms for developers to use; this allows them to

control what gets put on their devices.

 Examples: BREW (Qualcomm), .NET (Microsoft),

IPhone SDK (IPhone), Mophun (Oberon, mult),

Android NDK (Android phones)

How Games are Implemented II

JAVA (and other Interpreted languages)

 Most mobile devices support JAVA.

 J2ME (Micro Edition) specifically

optimized for mobile devices.

 “Sandbox” makes it less important for

platforms to control access.

 Examples: Processing (FREE & Simple),

MIDP (J2ME), ExEn, WGE, DoJa, Android

SDK.

How Games are Implemented III

Browser based games.

 Played using an optimized “web browser”
for the mobile device.

 Can be made in any web language (HTML,
PHP, Python, Perl, JavaScript).

 Can be made and displayed using
specialized web applications: FLASH LITE.

 Limitation has been bandwidth… thank you
3G & 4G.

How Games are Implemented V

What's different about mobile games.

What’s different about

mobile games I

Team Size:

 Conventional platform games require

large teams of 50 or more people.

 Mobile games can be developed by

groups as small as 3-5 people.

 Mobile game developers are more likely

to wear multiple hats: that is design,

code, debug and market their games.

continuing with our story...

 Ethan Nicholas working by himself, created

iShoot for the iPhone in 2008.

 Rereleased in January, 2009 it earned him

$800,000 in 5 months (total $1.1 million).

 At one point the game was earning him

$22,000/day.

 Ishoot's design, gameplay, development

and marketing present a case study on what

to do when creating a mobile app.

What’s different about

mobile games II

Budget:

 Conventional games have budgets in

the 1.5-5 million dollar range.

 Most mobile games are implemented for

less then $100,000.

 Limited capabilities of the devices being

designed for are actually an advantage.

What’s different about

mobile games III

Development LifeCycle:

 Conventional games take on average 2-

3 years to develop.

 Most mobile games are completed in a

few months.

 Small team, with small budget, using

iterative development can create a

quality game fairly quickly.

What’s different about

mobile games IV

Networked Devices:

 Mobile devices may be limited in input,

output and display but they have

powerful network capabilities built-in.

 Infrastructure supporting devices can be

easily leveraged for network games.

 Portable nature makes short range

wireless (blue-tooth) also an option.

What’s different about

mobile games V

Open Standards:

 Console development requires

“royalties” in order to develop games…

in the mobile world, not so much.

 Standards underlying mobile game

development are published, open and

available for review.

 Profit for manufactures is in the

hardware and in “app stores”.

Deployment

 Conventional games are (mostly)

purchased in software outlets.

 Mobile games are (mostly) downloaded

and installed.

 Distribution channels for mobile games

included built in menus, carrier menus as

well as wireless/web portals.

 End of the CD, DVD, Blue-Ray?

What’s different about

mobile games VI

Strengths of the medium

Strengths of the medium I.

HUGE potential audience.

 Over 4.6 billion mobile phones in use

today (More people own mobile phones

then computers).

 Almost ALL new phones coming on the

market support JAVA applications.

 Almost every mobile device manufacture

(except Apple) has agreed to support

Adobe Flash Player on all of their mobile

devices.

Strengths of the medium II.

Portability

 People like to play whenever and

wherever they choose.

 Greater chance for “viral” exposure to

games.

Strengths of the medium III.

Networked

 Mobile devices come pre-networked.

 Multiplayer and “social” games already

showing tremendous promise.

 Very unusual to have to write any extra

network features.

Limitations of the medium I

Limited Output (not just screen size).

 Touch screens are cool, but you can’t

play a game with your fingers in the way.

 Harder to get control and help

information on the screen.

 Fewer colors, refresh rates supported.

 Sound problems (codecs, and the

speakers themselves).

Limitations of the medium II.

Limited Application Size.

 Limited RAM is just a fact of life and

graphics add up.

 Limited processing power must also be

considered. Ex: How many collision

checks need to be made in each frame.

 Efficient algorithms just as important as

with console/computer games.

Limitations of the medium III.

Latency

 3G is an improvement, as is 4G where

available, but latency in multiplayer

games is always going to be a problem.

 Moreover some of the processor

intensive tricks used to handle latency in

console/computer games, don't translate

well to mobile devices.

Limitations of the medium IV.

Interrupt ability is crucial.

 If the phone rings, the player better be

able to stop the game without getting

killed.

 Application must be able to pause and

recover, without crashing or causing the

player to “lose” something.

 Again, most mobile languages support

the "reflective" paradigm.

Limitations of the medium V.

Rapidly evolving technologies.

 All of those poor saps who thought they

had the mobile game market covered

with BREW got dealt a really rude

surprise by the IPhone.

 Flash-Lite and Android in turn may turn

out to be devastating to the 24%

prediction regarding Apple.

Making it work...

Making it Work I.

Short Play Times.

 Short levels, short games.

 What if they want to make a call?

 Don’t want to run down the battery.

 If they had more time, they would

choose a different platform.

 If a game is popular, you can always

make a sequel.

Making it Work II.

Let people play on their schedule.

 NEVER force them to wait (instant on).

 Allow for saves, pauses, repeats, skips,

etc.

 One frustrating level, or bad save, or

slow load and they may never play

again.

Making it Work III.

Use the network.

 A phone is a social device.

 At minimum allow the saving and

posting of high scores.

 Multiplayer modes (if you can

overcome latency) are a really good

(and increasingly popular) choice.

Making it Work IV.

Plan to support multiple devices.

 At a minimum plan your game to

support multiple screen sizes.

 Better yet, target a large pool of

devices.

 Flash-Lite, and Eclipse are both now

supporting tools for multiple output

formats.

Making it Work V.

Plan for the form factor.

 Avoid designs that require a player to look

at many places (in a larger world) in a short

period of time.

 Avoid making the player “switch” views

often. It’s best if entire world can be seen

on screen at once.

 It’s best if player only has to “control” one

object in the world.

Making it Work VI.

Plan for the processor and RAM allotment.

 Aim to use far far less then what you think

is available (10-20%).

 Use a smart timing loop (like an update

manager) to keep track of the actual speed

of your game and make adjustments.

 Allow processor heavy features (particle

effects, 3D effects, complex animations) to

be turned on and off (just a flag in the loop).

Making it Work VII (cont).

Design for a business model.

 Application sale.

 Advertising revenue or product tie-in.

 Trial versions.

 One month licenses.

 Charging for “data traffic” or “airtime”.

 This last model is increasingly popular in foreign

markets, but as not yet become normative in U.S.

For more information...

For more information:

IPHONE

 FREE to develop, but applications must be

approved and Apple takes cut (30%)

 FREE online IPhone programming course

from Stanford University:

• http://www.stanford.edu/class/cs193p/cgi-

bin/index.php

 IPhone Developers Network:

• http://developer.apple.com/iphone/

For more information:

 FLASH – Part of Adobe CS4

 Free 30 day trial, then $300.

 Flash Lite download (mobile devices):

• https://www.adobe.com/cfusion/entitlement/ind

ex.cfm?e=flashcdk

• Flash Lite games can be exported as iPhone

applications (Castle Crashers).

 Flash Lite – Best Practices:

• http://www.adobe.com/devnet/devices/articles/

cryptic_capers_print.html

For more information:

 Mobile Processing – A Java based scripting

environment for mobile devices.

 FREE: http://mobile.processing.org/

 Learning the Processing Language:

• http://processing.org/learning/

 Learning the Mobile libraries:

• http://mobile.processing.org/learning/

For more information:

 Android: FREE

 Two ways to develop:

 Natively: NDK, C library (known as Bionic).

 Android SDK (Java language subset)

• http://developer.android.com/index.html

• Includes emulator

• Predicted by 2012 Android 2nd most popular

smartphone platform: (1. Nokia's Symbian; 3.

iPhone, 4. Blackberry, 5. Winmobile.)

