
CIS3.5 Spring 2010 Lecture II.
2

More programming with
"Processing"

Resources

• Processing web site:
 http://www.processing.org/
• Linear motion:
 http://www.processing.org/learning/topics/linear.html
• Sequential animation:
 http://www.processing.org/learning/topics/sequential.html
• Reference:
 http://www.processing.org/reference/index.html

http://www.processing.org/
http://www.processing.org/learning/topics/linear.html
http://www.processing.org/learning/topics/sequential.html
http://www.processing.org/reference/index.html

Variables
variables provide a way to save information within your
sketch and use it to control the position, size, shape, etc of
what you are drawing
variables have a data type, a name and a value
valid data types are:

int — for storing integers (whole numbers)
float — for storing floating point (real) numbers
boolean — for storing true or false values
char — for storing single characters
String — for storing multiple (strings of) characters

example:
int x1 = 10;
int y1 = 10;
int x2 = 20;
int y2 = 20;
line(x1, y1, x2, y2);

Looping

loops are used for doing things repeatedly
there are two basic types of loops:

 for loops
 while loops

loops are handy for animation, because you typically want
to display things repeatedly when you are doing animation
looping is a type of:

repetition (required element of imperative programming)
iteration (same thing as repetition)

for loops

for loops repeat things for a fixed number of times
syntax:

for (init; test; update) {
 statements
}

example:
int x = 10;
int y1 = 10;
int y2 = 20;
for (int i=0; i<10; i++) {
 line(x, y1, x, y2);
 x = x + 10;
}

while loops

while loops repeat things as long as a condition holds true
syntax:

while (expression) {
 statements
}

example:
int x = 10;
int y1 = 30;
int y2 = 40;
while (x < width) {
line(x, y1, x, y2);
x = x + 10;
}

Standard Processing Program
1. Setup any variables or classes you are going to use.
2. Use setup() function to specify things to do once, when the

sketch first opens
3. Use draw() function to specify things to do repeatedly

use frameRate() function to specify how often things
should be repeated in draw();
default frame-rate is 60 (60 frames per second)
NOTE: call to frameRate() should be done inside setup()
function

4. Declare and event-listeners that you are going to use.
5. Declare any custom made functions you are going to use.
6. Declare any classes that you are going to use.

Note: I have created a processing template that you can use to
start your programs.

Animation
Basic animation involves the following steps:
1. Drawing initial frame - perhaps in setup().
2. Waiting some amount of time (e.g., 1/60th of a second)

Processing does that automatically
3. Erasing the screen.

Usually be reapplying the background (draw does this
automatically).

4. Drawing the next frame.
5. Repeating steps 2-4, until you are ready to stop animating.

There are two basic ways to implement animation:
1. Drawing your own shapes, text, etc.
2. Displaying a GIF or other image file

Vector Animation (drawing shapes)
From http://www.processing.org/learning/topics/linear.html

float a = 100;
void setup() {
 size(640, 200);
 stroke(255);
}
void draw() {
 background(51);
 a = a - 0.5;
 if (a < 0) {
 a = height;
 }
 line(0, a, width, a);
}

http://www.processing.org/learning/topics/linear.html

Bitmap Animation (using pictures)
http://www.processing.org/learning/topics/sequential.html

int numFrames = 4; // The number of frames in the animation
int frame = 0;
PImage[] images = new PImage[numFrames];

void setup() {
size(200, 200);
frameRate(30);
images[0] = loadImage("PT_anim0000.gif");
images[1] = loadImage("PT_anim0001.gif");
images[2] = loadImage("PT_anim0002.gif");
images[3] = loadImage("PT_anim0003.gif");

}
void draw() {

frame = (frame + 1) % numFrames; // Use % to cycle through frames
image(images[frame], 50, 50);

}

http://www.processing.org/learning/topics/sequential.html

Movement and Animation
int xPos = 0;
int yPos = 50;

void draw() {
 xPos = (xPos + 2) % width;
 frame = (frame + 1) % numFrames; // Use % to cycle through frames
 image(images[frame], xPos, yPos);
}
 ...
void keyPressed() {
 if (key == CODED) {
 if (keyCode == UP) {
 yPos = yPos - 2;
 } else if (keyCode == DOWN) {
 yPos = yPos + 2;
 }
 }
}

Mouse Interaction
mouseX and mouseY

indicate (x, y) location of mouse pointer
mouseClicked()

handles behavior when user clicks mouse button (press and
release)

mouseMoved()
handles behavior when user moves mouse (moves it without
pressing button)

mouseDragged()
handles behavior when user drags mouse (moves it with
button pressed)

mouseButton
indicates which button was pressed, on a multi-button mouse
(on a Mac, use Cntl-click for left mouse button, Alt-click for
middle mouse button and Apple-click for right mouse button)

Example 1 (mouse location)

void setup() {
size(200, 200);

}

void draw() {
background(#cccccc);
// What happens if you remove the line above?
fill(#000099);
rect(mouseX, mouseY, 20, 20);

}

Example 2 (mouseMoved)
void setup() {

size(200, 200);
}
void draw() {

background(#cccccc);
fill(#990000);
rect(mouseX, mouseY, 20, 20);

}
void mouseMoved() {

fill(#000099);
rect(mouseX, mouseY, 20, 20);

}
/* how does this behave differently from the mouse location
example? */

Example 3 (mouseDragged)
void setup() {

size(200, 200);
}
void draw() {

background(#cccccc);
fill(#990000);
rect(mouseX, mouseY, 20, 20);

}
void mouseMoved() {

fill(#000099);
rect(mouseX, mouseY, 20, 20);

}
void mouseDragged() {

fill(#009900);
rect(mouseX, mouseY, 20, 20);

}
/* how does this behave differently from the previous two examples? */

Example #4 (mouseClicked)
int r = 0;
int g = 0;
int b = 0;
void setup() {

size(200, 200);
}
void draw() {

background(#ffffff);
fill(r, g, b);
rect(50, 50, 20, 20);

}
void mouseClicked() {
 r = r + 51;
 if (r > 255) {
 r = 0;
 g = g + 51;
 if (g > 255) {
 g = 0;
 b = b + 51;
 if (b > 255) {
 b = 0;
 }
 }
 }
 println("r=" + r + " g=" + g + " b=" + b);
}

Example #5 (mouseButton)
void setup() {

size(200, 200);
}
void draw() {

background(#cccccc);
rect(mouseX, mouseY, 20, 20);

}
void mousePressed() {

if (mouseButton == LEFT) {
fill(#990000);
}
else if (mouseButton == CENTER) {

fill(#009900);
}
else if (mouseButton == RIGHT) { // Ctrl-click on mac

fill(#000099);
}

}

