
Mechanics, Dynamics
& Aesthetics

The Complexity of Games
Expectations of Players
Efficiency
Game Mathematics

Collision Detection & Response
Object Overlap Testing
Minkowski Sum
Geometry, Trigonometry
Vectors

Game State
Narrative

In literature
In film
In games

MDA
Mechanics
Dynamics
Aesthetics

Video Games Are Very Complex
Programs

Programming a simple web-hosted Flash game requires a
very high level of programming knowledge; may also
require expertise in:

Network Protocols
Data retrieval and management techniques
Graphic & Sound creation/management
Geometry, Trigonometry and Calculus
Vector mathematics
3D mathematics

Player Expectations

In general, games are held to a higher standard than
other types programs.

People expect "office applications" to fail, and don't
expect 100% up-time from business websites.

What we are willing to tolerate when "working" is wildly
different then what we are willing to tolerate when
"playing".

Efficiency

Complexity and computability are concepts that are not
normally taught on an undergraduate level.

Game programmers need to consider "efficiency" in
everything they do.

If a player had to wait more than 30 seconds for levels to
load in a game, their "review" of that game was greatly
reduced.

Game Mathematics
"Game Mathematics" refers both to areas of general
mathematics (geometry, trigonometry, calculus) as well as
specialized areas of mathematics (vectors, matrices).

Graphic libraries, game libraries, 2D and 3D libraries exist
for programming languages to help simplify the
mathematical problems that you will face. But they can't
be relied on to do everything.

Collision Detection
Figuring out if two objects are touching incredibly common
problem in a game.

Two basic techniques:
1. Overlap testing

Detects whether a collision has already occurred
2. Intersection testing

Predicts whether a collision will occur in the future

Overlap Testing

Facts:
Most common technique used in games
Exhibits more error than intersection testing

Concept
For every simulation step, test objects to see if they
overlap
Easy for simple volumes like spheres, harder for
polygonal models

Simple Overlap Testing
Simple example is particle interacting with a square.This
will still require 4 logical tests in a 2D game.

Depending on the
type of game that
played, the order of
those 4 tests can
have a profound
effect on efficiency.

Complex Shape OOT

How many tests would be required now?

Bounding Boxes
Bounding Boxes can be used to reduce the complexity
of shapes to simplify overlap testing. Note that
secondary testing may need to be done if the bounding
box is found to overlap. How many test now?

Minkowski Sum

By taking the Minkowski Sum of two complex volumes and
creating a new volume, overlap can be found by testing if a
single point is within the new volume.

Variations on the Minkowski Sum include calculating the x,
y and z distances between the two objects that are being
tested.

Minkowski Sum

OT - Collision Time
Collision time calculated by moving object back in time until right
before collision.

Bisection is one effective technique.
Minkowski values are another.

Collision Response

Having captured the
exact moment and
position of
collision, geometry, and
trigonometry can be
applied to calculate new
trajectories.

Limits of OT
OT is easy, but limited.

Fails with objects that move too fast
Unlikely to catch time slice during overlap

Possible solutions
Design constraint on speed of objects
Reduce simulation step size
Use Vectors

Vectors
You are already know of "vector images", images represented by a
mathematical formula.
We can represent entire objects (and their movement) with
formula's as well.
Vector (an matrice) mathematics can then be applied to reveal
information about where objects will be and whether or not the will
collide (at any time, past or future).

 P1[x1, y1, x2, y2]; // A particle vector.

Game State
All games consist of a sequence of states.
Each state is characterized by a combination of visual,
audio and/or animation effects, as well as a set of rules
that are being applied.

Object State

Objects in the game proceed through their own states
as well. These states are defined by the behavior and
functionality applied at that time.

Narrative
The narratological view of game studies is that games should be
understood as novel forms of storytelling and can thus be studied
using theories of narrative.

The "novel form" they refer to is that the player may have some
choice about the states that the narrative reaches and/or the
order in which the states proceed ("Choose your own
adventure").

Treating a game as a narrative (or including sound narrative as
part of a game) can help us make a more compelling game.

Narrative in Literature
Rules for narrative in literature have been around since the
time of the Greeks (Aristotle's Poetics).

Questions to ask:
1. Whose telling the story?
2. What is the conflict?
3. Who is the player meant to identify?
4. What do you want the player to feel?

Narrative in Film

Modern games have far more in common with film
(cinematography) then with regular literature. Cinema also
has a lexicon of well established rules regarding the
creation of compelling narrative.

1. Don't break the narrative plane.
2. Don't break the narrative chain.
3. Use the camera to frame action.
4. Use the camera to immerse the viewer.
(Note: You have perfect camera, light, etc.)

Narrative in Games

Ultimate goal (as with literature, and cinema) is to get
the player or viewer to "suspend disbelief" and have a
"real" emotional response to events that are entirely
fictitious.

Including a compelling narrative in a game can "make it
incredible" (ChronoTrigger, BioShock) or simply create a
series of annoying cut scenes that a player has to wade
through.

MDA
Mechanics, Dynamics & Aesthetics

MDA is a game development paradigm designed to help
developers make the most out of a game idea, and proceed
efficiently through the complex process of bringing a game
to market.

MDA is one of many development paradigms that are
rigidly used by large game development companies.

Mechanics
Before a single line of code is written the mechanics that will be
used by the game should be well thought out and documented.

This includes:
The programming language
The programming libraries, engines, tools
The hardware required/available
The logical programming components
The storage/retrieval/initialization methods

Dynamics
Before a single line of code is written the dynamics that will be
used by the game should be well thought out and documented.
This is the "ludo-logical" part of MDA. All objects and axioms
need to be detailed!

This includes:
The domain of the game.
The players in the game.
The rules of the game.
The objects in the game.

Aesthetics
Before a single line of code is written the aesthetics that will
be used by the game should be well thought out and
documented. This is the "narratological" part of MDA. The
"art bible" which should contain every detail of the "look" of
the game will come out of this development area.

This includes:
Color Pallete
Physical looks for all players
Lighting plots, schemes, etc.

