
Mobile Game

Programming

Just that facts.

First…. a story.

http://www.nytimes.com/2009/04/05/fashion/05iphone.html

August, 2008: Ethan Nicholas, a Java engineer at Sun Microsystems

(married, two kids) is desperate for money, and has heard that people

can make hundreds, even thousands, of dollars making apps for the

iPhone. Working at night, sometimes cradling his 1-year old son, he

starts working on a game “iShoot”.

October 2008: iShoot is released.

Over the next 4 months iShoot

earns Ethan over $3,000 (@

$5/copy).

January 2009: Very satisfied

with the money he has already

made, Ethan releases a “free-

trial” version of the game and

lowers the price to $3.

Introduction I

 Mobile Devices (Primary Purpose):

 Gaming Devices: Nintendo DS, PSP.

 Music Devices: ZUNE, IPod.

 Cellphone Devices: Nokia, Samsung

 Web Devices: Blackberry, IPhone, PDA’s

 Line between all of these devices is rapidly

becoming blurred.

Introduction II

 Modern mobile devices are small computers
(simple phones == 1990 computer; IPhone ==
original XBOX).

 Signature feature of these devices is built in
network support. Mobile devices driving force
behind advances in wireless communication
technologies.

 Limited RAM as well as limited input, output, and
display capabilities.

Introduction III

 What they lack in power, they make up for in sheer

installed base. Most of the world owns at least one

mobile phone.

 Worldwide market for portable and mobile games

$5.4 billion in 2008. Estimate $11.7 billion by 2014.

 In the three months ending February 2010, an

average of 50.9 million mobile subscribers played at

least one game in the past month.

 Apple iPhone/iPod Touch are currently expected to

comprise 24% of all portable game software sales,

including PSP and DS by 2014.

How Games are Implemented I

1. Embedded Games:

 Built into chipset or OS.

 Ships with device, rarely added after.

 Example: Snake.

2. SMS Games:

 Piggy back on SMS system for functionality.

 Played by sending text messages to other

phones and servers.

3. C Games (C#, C++, Mobile-C, Objective-C, Bionic)

 Written then compiled for specific system.

 Fast, powerful, optimized applications are possible

that directly access phone hardware.

 Different vendors create application development

platforms for developers to use; this allows them to

control what gets put on their devices.

 Examples: BREW (Qualcomm), .NET (Microsoft),

IPhone SDK (IPhone), Mophun (Oberon, mult).

How Games are Implemented II

4. JAVA (and other Interpreted languages)

 Most mobile devices support JAVA.

 J2ME (Micro Edition) specifically

optimized for mobile devices.

 “Sandbox” makes it less important for

platforms to control access.

 Examples: Processing (FREE & Simple),

MIDP (J2ME), ExEn, WGE, DoJa,

Android SDK.

How Games are Implemented III

5. Browser based games.

 Played using an optimized “web browser”
for the mobile device.

 Can be made in any web language (HTML,
PHP, Python, Perl, JavaScript).

 Can be made and displayed using
specialized web applications: FLASH LITE.

 Limitation has been bandwidth… thank you
3G.

How Games are Implemented V

What’s different about

mobile games I

1. Team Size:

 Conventional platform games require

large teams of 50 or more people.

 Mobile games can be developed by

groups as small as 3-5 people.

 Ethan Nicholas working by himself,

created iShoot for the iPhone in 2008.

Rereleased in January, 2009 it earned

him $800,000 in 5 months.

What’s different about

mobile games II

2. Budget:

 Conventional games have budgets in

the 1.5-5 million dollar range.

 Most mobile games are implemented for

less then $100,000.

 Limited capabilities of the devices being

designed for are actually an advantage.

What’s different about

mobile games III

3. Development LifeCycle:

 Conventional games take on average 2-

3 years to develop.

 Most mobile games are completed in a

few months.

 Small team, with small budget, using

iterative development can create a

quality game fairly quickly.

What’s different about

mobile games IV

4. Networked Devices:

 Mobile devices may be limited in input,

output and display but they have

powerful network capabilities built-in.

 Infrastructure supporting devices can be

easily leveraged for network games.

 Portable nature makes short range

wireless (blue-tooth) also an option.

What’s different about

mobile games V

5. Open Standards:

 Console development requires

“royalties” in order to develop games…

in the mobile world, not so much.

 Standards underlying mobile game

development are published, open and

available for review.

6. Deployment

 Conventional games are (mostly)

purchased in software outlets.

 Mobile games are (mostly) downloaded

and installed.

 Distribution channels for mobile games

included built in menus, carrier menus as

well as wireless/web portals.

What’s different about

mobile games VI

Strengths of the medium I.

1. HUGE potential audience.

 Over 2 billion mobile phones in use today (More

people own mobile phones then computers).

 Almost ALL new phones coming on the market

support JAVA applications.

 Almost every mobile device manufacture (except

Apple) has agreed to support Adobe Flash

Player on all of their mobile devices.

Strengths of the medium II.

2. Portability

 People like to play whenever and

wherever they choose.

 Greater chance for “viral” exposure to

games.

Strengths of the medium III.

2. Networked

 Mobile devices come pre-networked.

 Multiplayer and “social” games already

showing tremendous promise.

Limitations of the medium I

1. Limited Output (not just screen size).

 Touch screens are cool, but you can’t

play a game with your fingers in the way.

 Harder to get control and help

information on the screen.

 Fewer colors, refresh rates supported.

 Sound problems (codecs, and the

speakers themselves).

Limitations of the medium II.

2. Limited Application Size.

 Limited RAM is just a fact of life and

graphics add up.

 Limited processing power must also be

considered. Ex: How many collision

checks need to be made in each frame.

Limitations of the medium III.

3. Latency

 3G is an improvement, but latency in

multiplayer games is always going to be

a problem.

Limitations of the medium IV.

4. Interrupt ability is crucial.

 If the phone rings, the player better be

able to stop the game without getting

killed.

 Application must be able to pause and

recover, without crashing or causing the

player to “lose” something.

Limitations of the medium V.

5. Rapidly evolving technologies.

 All of those poor saps who thought they

had the mobile game market covered

with BREW got dealt a really rude

surprise by the IPhone.

 Flash-Lite and Android in turn may turn

out to be devastating to the 24%

prediction regarding Apple.

Making it Work I.

1. Short Play Times.

 Short levels, short games.

 What if they want to make a call?

 Don’t want to run down the battery.

 If they had more time, they would

choose a different platform.

Making it Work II.

2. Let people play on their schedule.

 NEVER force them to wait.

 Allow for saves, pauses, repeats,

skips, etc.

 One frustrating level, or bad save, or

slow load and they may never play

again.

Making it Work III.

3. Use the network.

 A phone is a social device.

 At minimum allow the saving and

posting of high scores.

 Multiplayer modes (if you can

overcome latency) are a really good

(and increasingly popular) choice.

Making it Work IV.

4. Plan to support multiple devices.

 At a minimum plan your game to

support multiple screen sizes.

 Better yet, target a large pool of

devices.

 Flash-Lite, and Eclipse are both now

supporting tools for multiple output

formats.

Making it Work V.

5. Plan for the form factor.

 Avoid designs that require a player to look

at many places (in a larger world) in a short

period of time.

 Avoid making the player “switch” views

often. It’s best if entire world can be seen

on screen at once.

 It’s best if player only has to “control” one

object in the world.

Making it Work VI.

6. Plan for the processor and RAM allotment.

 Aim to use far far less then what you think

is available.

 Use a smart timing loop (like an update

manager) to keep track of the actual speed

of your game and make adjustments.

 Allow processor heavy features (particle

effects, 3D effects, complex animations) to

be turned on and off.

Making it Work VII (cont).

7. Design for a business model.

 Application sale.

 Advertising revenue or product tie-in.

 Trial versions.

 One month licenses.

 Charging for “data traffic” or “airtime”.

 This last model is increasingly popular in foreign

markets, but as not yet become normative in

the U.S.

For more information:

 IPHONE

 FREE to develop, but applications must

be approved and Apple takes cut.

 FREE online IPhone programming

course from Stanford University:

• http://www.stanford.edu/class/cs193p/cgi-

bin/index.php

 IPhone Developers Network:

• http://developer.apple.com/iphone/

http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://www.stanford.edu/class/cs193p/cgi-bin/index.php
http://developer.apple.com/iphone/

For more information:

 FLASH – Part of Adobe CS4

 Free 30 day trial, then $300.

 Flash Lite download (mobile devices):

• https://www.adobe.com/cfusion/entitlement/ind

ex.cfm?e=flashcdk

• Flash Lite games can be exported as iPhone

applications (Castle Crashers).

 Flash Lite – Best Practices:

• http://www.adobe.com/devnet/devices/articles/

cryptic_capers_print.html

https://www.adobe.com/cfusion/entitlement/index.cfm?e=flashcdk
https://www.adobe.com/cfusion/entitlement/index.cfm?e=flashcdk
https://www.adobe.com/cfusion/entitlement/index.cfm?e=flashcdk
http://www.adobe.com/devnet/devices/articles/cryptic_capers_print.html
http://www.adobe.com/devnet/devices/articles/cryptic_capers_print.html
http://www.adobe.com/devnet/devices/articles/cryptic_capers_print.html

For more information:

 Mobile Processing – A Java based

scripting environment for mobile devices.

 FREE: http://mobile.processing.org/

 Learning the Processing Language:

• http://processing.org/learning/

 Learning the Mobile libraries:

• http://mobile.processing.org/learning/

http://mobile.processing.org/
http://mobile.processing.org/
http://processing.org/learning/
http://processing.org/learning/
http://mobile.processing.org/learning/index.php

For more information:

 Android: FREE

 Two ways to develop:

 Natively: C library (known as Bionic).

 Android SDK (Java language subset)

• http://developer.android.com/index.html

• Includes emulator

• Numerous major problems with A-SDK.

• Predicted by 2012 Android 2nd most

popular smartphone platform: (1. Nokia's

Symbian; 3. iPhone, 4. Win Mobile, 5.

Blackberry.)

http://developer.android.com/index.html

