
cis1.5/robotics-spring2008-azhar
robotics.edu—agents lab
Brooklyn College, CUNY

c©2008

cis1.5-spring2008-azhar, lab IV, part 3

instructions

• This is the third part of the lab/homework assignment for unit IV.

• The third part is worth 4 points and optional. The third part is due on Thursday April 17th and must
be submitted by email, as below:

1. Create a mail message addressed to mqazhar@sci.brooklyn.cuny.edu with the subject line cis1.5
hw4part3.

2. Attach ONLY the .cpp files for each part, as outlined below.

3. Failure to follow these instructions will result in points being taken away from your grade. The number
of points will be in proportion to the extent to which you did not follow instructions.

vision processing: surveyor robot finds the ball autonomously!

A robot becomes a lot better when it has sensors, then it can make decisions about what to do based on its
environment. The Surveyor has a color camera as its main sensor. For this assignment, your robot will find a
ball by itself autonomously (i.e., without user’s help) using its color camera. Robot will take the picture using
takePhoto() method and savePhoto(“nameofyourpicture.jpg”) method of Surveyor 1 class. You can make your
own software design decisions about whether you want to write separate functions to do each step of if you want
to do all the steps inside the main().

Name your program: findball.cpp and submit ONLY this file.

programming assignment (TO BE DONE WITH A PARTNER)

• MY PARTNER’S NAME IS:

• After you get the program to work, write the code in the boxes provided. Partial credit will be given!

• Demonstrate each working program for your instructor.

1

• Released under the Copyleft provision.

• Produced at Brooklyn College by John Cummins with assistance from M. Q. Azhar, and supervision from Professor
Sklar.

1

vocabulary

• autonomous

• vision processing

• image size (e.g.,64 rows by 80 colomns)

• pixel

• indexing through an array

• class (e.g., Surveyor, YUVRange) and object (e.g., robot, ballColor)

• member function (e.g., takephoto() and savephoto(“myphoto.jpg”))

• calling member function (e.g., robot.getCountScan(1, ball))

materials

Make sure you have all of the following materials before you start the lab:

• Surveyor robot

• XBee USB dongle

• c++ compiler, such as mingw (Windows) or g++ (Mac)

• codeblock, text editor, such as Notepad (Windows) or TextEdit (Mac) or pico (Unix)

• you must be in

– \dev\examples directory in Windows

– /dev/examples directory In Mac or Unix or Linux computer

– Please note that Windows computers use back slash (\) to separate directory (e.g., \dev\examples)
while all other operating systems (e.g., Linux, Unix and Mac) use forward slash (/) to separate directory
(e.g., /dev/examples)

– use cd command to change directory

2

• create your first program

– Enter the following program using a text editor:

/*findball
a simple demonstration program for the Surveyor class

usage: findball

Description: robot will turn until it sees the ball
*/

#include "SVR.h"
/*the color of the ball is stored here*/
#include "color.h"

#include <stdio.h>
#include <stdlib.h>

#include <iostream>
#include <assert.h>
using namespace std;

/* make a global Surveyor object called robot */
Surveyor robot(ADDRESS);

/* make a global YUVRange object called ballColor
to set up the color of the ball*/
YUVRange ballColor(T_ORANGE_BALL);

int main()
{

char buffer[256];
int ball[80];
robot.getVersion(buffer);
cout << "SRV-1 version " << buffer << endl;

/*robot will compare what it sees by using given ballColor object*/
robot.setBin(1, ballColor);

for (;;) /*this is a forever loop*/
{
/*checks to see if there is a color match */
robot.getCountScan(1, ball);
if (ball[40] > 0){

break; /*robot thinks that it finds a match*/
robot.drive(-40, 40, 3); /* turn a bit for .03 second*/
}

return 0;
}

3

• compile your program

– From the Windows command window or the Mac terminal window, at the command-line prompt (>),
type:
> make findball
This will compile and link the program.

– If there are errors in your program code, fix them and then try compiling and linking again—until the
program compiles and links without any errors.

• dissecting the code

– #include "SVR.h";

This line always needs to be included at the top of all programs writen for the Surveyor. Whenever
you use a command in a program like robot.getCountScan(1,ball);, the Surveyor has to know
what that means. The includet... line tells the program where to find a “library” of all the surveyor
specific terms. Please note that this header is not part of standard C++ library. SVR.h is specially
written for Surveyor robot.

– #include "color.h" the color value (YUVRange) of the ball is stored here

– #include <iostream>;

This header is an object-oriented library that provides input and output functionality using streams.

– #include <assert.h>;

This header defines one macro that can be used as a standard debugging tool.

– using namespace std;

This line lets you use cout and cin without additional syntax (e.g., std::cout).

– Surveyor robot (ADDRESS);

∗ Creating class object: This line creates an object of class type Surveyor called robot. You
may use this object (e.g., robot) to send commands (e.g., (drive(50, 50, 100)) to your robot.

∗ Global declaration: This is a global declaration and can be used by main and as well as your
defined function in this program.

– YUVRange ballColor(T_ORANGE_BALL);

∗ we have a new object called ballColor which encapsulates the robots idea of the color of the ball.
We included color.h to get the value T ORANGE BALL used to initialize the ballColor object.
One of the nice things about C++ is that we can use objects without knowing everything about
them. For the moment think of ballColor as specifying orange.

– robot.setBin(1, ballColor);

∗ tells the robot we are interested in orange things. The robot has ten ”color bins” numbered from
0 to 9 (think: a color array) and we have set bin number 1 to orange.

– robot.getCountScan(1, ball);

∗ this line fill the array ball with values depending on where the robot sees the color orange.

4

• vision processing
The Surveyor robot divides its field of vision into an 80 by 64 grid. 80 horizontal and 64 vertical (80 in the
X direction, 64 in Y direction). Which the robot views as 80 columns, and the getCountScan method will
load each element of the array with the number of orange pixels in the corresponding column.

For example, if the robot is seeing the above picture, the getCountScan(1, ball); will fill the array ball with
the following values

getCountScan(1, ...) =
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 4 5 3
5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The robot doesn’t see any orange in colums 0 through 34 so the array elements 0 through 34 are loaded
with zeros. In colums 35 to 41 the robot sees the orange ball and so array elements 35 to 41 are loaded
with values greater than zero. The robot doesn’t see any orange in columns 42 to 79 and so array elements
42 to 79 are loaded with zeros.

Back to the program, inside the for loop we getCountScan, if the element 40 is zero or one we turn the
robot a bit(note use of the duration parameter to get a small precise turn). When element 40 is two or
greater we break out of the for loop, stop the robot and terminate the program.
The effect of this is that the robot will turn until it sees the ball.

• compile your program

– From the Windows command window or the Mac terminal window, at the command-line prompt (>),
type:
> make findball
This will compile and link the program.

– If there are errors in your program code, fix them and then try compiling and linking again—until the
program compiles and links without any errors.

• run your program

– Make sure the XBee dongle is be same channel as your robot and is connected to your computer’s
USB port.

– Connect it to your computer’s USB port (ask if you need help finding it).

– The Surveyor must be turned on.

5

– On Windows, at the command-line prompt (>), type:
> findball
or on the Mac (or Linux or Unix) terminal window, at the command-line prompt (>), type:
> ./findball
This will run your program and send commands to the robot.

– What did your robot do? Is that what you expected? Write your answer below.

– troubleshooting

∗ If you have trouble, check these things:

1. The Surveyor must be turned on during communication.

2. LEDs on the robot and dongle should be on.

3. the make command should be in your path (ask if you need help).

4. you should be in the right directory:

· On Windows:

\dev\examples directory in Windows.

· On Mac:
/dev/examples directory In Mac or Unix or Linux computer.

5. Make sure the XBee dongle is be same channel as your robot and is connected to your
computer’s USB port.

• modify the program

– Display all the values of array ball in 4 lines. (Hint: you should enter a new line after displaying 20
consecutive integers.) Here is the entire array from the figure below:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 9 10 11 12 13 11 13 14 14 15 16 18 18 19 19 19 19 19 19
18 19 18 17 17 17 15 15 18 20 21 21 18 14 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

– Please note that line 1 and line 2 (i.e., first two lines, ball[0] ... ball[39]) represent left side of the
picture and line 3 and line 4 (last two lines, ball[40] ... ball[79]) represent right side of the picture.

– Modify the program to count the number of pixels that match the ball’s color in ball array.
(Hint: if (ball[i]>0) increment counter variable).
Print out this number. What do you think is the significance of this number?

6

– Modify the program to add up the number of pixels that match the ball’s color.
(Hint: add up all the values in array ball[80]). Print out this number. What does this number
represent?

– Display “Yeah, I think that I found the ball”

– Take and save a picture of what the robot sees. Do you see the ball in the picture? [Hint: your picture
is saved in the same directory of your findball.cpp program]

• more challenges

– Make your robot move around (pattern or random), checking regularly if it sees the ball. If the
robot sees more pixels of the correct color than it has before, it will take and save a picture named
bestshot.jpg. After the end of a test run display array ball and examine the bestshot.jpg picture.

– Modify the program so the robot points to the the center of the ball (not the edge). Take a picture
and display ball array. Is it the center?

– Then modify the program so the robot moves towards the ball, taking pictures as it goes. Stop the
robot when it has no longer “sees” the ball.

moving towards the ball when it finds it. Robot will take pictures as it goes. It should stop taking
pictures and come to a hault when there is no ball in front of it.

– Modify the program to make the robot find the ball and push the ball.

– Modify the program to make the robot track a moving ball.

– Modify the program to make the robot play soccer. What would be a good strategy to avoid its own
goals? What would you need for robots to cooperate?

7

