
OOP using JAVA

INTRODUCTION

Why Java Programming
Language?

•Simple
•Safe
•Platform-independent ("write
once, run anywhere")

•Rich library
•Designed for the internet

Little History of Java
Programming Language

• Java
– Based on C and C++
– Originally developed in early 1991 for intelligent

consumer electronic devices
• Market did not develop, project in danger of being

cancelled

– Internet exploded in 1993, saved project
• Used Java to create web pages with dynamic content

– Java formally announced in 1995
– Now used to create web pages with interactive

content, enhance web servers, applications for
consumer devices (pagers, cell phones)...

All about Java Programming
Language

• Java programs
– Consist of pieces called classes
– Classes contain methods, which perform tasks

• Class libraries
– Also known as Java API (Applications

Programming Interface)
– Rich collection of predefined classes, which you

can use
• Two parts to learning Java

– Learning the language itself, so you can create
your own classes

– Learning how to use the existing classes in the
libraries

Basics of a Typical Java Environment
• Java Systems

– Consist of environment, language, Java
Applications Programming Interface (API), Class
libraries

• Java programs have five phases
– Edit

• Use an editor to type Java program
• vi or emacs, notepad, Jbuilder, Visual J++
• .java extension

– Compile
• Translates program into bytecodes, understood by Java

interpreter
• javac command: javac myProgram.java
• Creates .class file, containing bytecodes

(myProgram.class)

Basics of a Typical Java Environment

• Java programs have five phases
–Loading

• Class loader transfers .class file into memory
– Applications - run on user's machine
– Applets - loaded into Web browser, temporary

• Classes loaded and executed by interpreter with
java command
java Welcome

• HTML documents can refer to Java Applets, which
are loaded into web browsers. To load,
appletviewer Welcome.html
– appletviewer is a minimal browser, can only interpret

applets

Basics of a Typical Java Environment

• Java programs have five phases Verify
• Bytecode verifier makes sure bytecodes are valid

and do not violate security
• Java must be secure - Java programs transferred

over networks, possible to damage files (viruses)

–Execute
• Computer (controlled by CPU) interprets program

one bytecode at a time
• Performs actions specified in program

–Program may not work on first try
• Make changes in edit phase and repeat

Program is created in
the editor and stored
on disk.
Compiler creates
bytecodes and stores
them on disk.

Class loader puts
bytecodes in memory.

Bytecode verifier
confirms that all
bytecodes are valid
and do not violate
Java’s security
restrictions.

Interpreter reads
bytecodes and
translates them into a
language that the
computer can
understand, possibly
storing data values as
the program executes.

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

DiskEditor

Compiler

Class Loader

Disk

Disk

Primary
Memory

Primary
Memory

Primary Memory

Bytecode Verifier

Interpreter

1.14 General Notes about
Java and This Book

• Just-in-time compiler
–Midway between compiling and interpreting

• As interpreter runs, compiles code and executes it
• Not as efficient as full compilers

– Being developed for Java

– Integrated Development Environment (IDE)
• Tools to support software development
• Several Java IDE's are as powerful as C / C++

IDE's

An Integrated Development
Environment

File Hello.java

1 public class Hello
2 {
3 public static void main(String[] args)
4 {
5 // display a greeting in the console window
6 System.out.println("Hello, World!");
7 }
8 }

A simple program

•public class ClassName
•public static void main(String[]
args)

•// comment
•Method call
object.methodName(parameters)

•System class
•System.out object
•println method

Syntax 1.1: Method Call

• object.methodName(parameters)

–Example:
• System.out.println("Hello,Dave!");

–Purpose:
• To invoke a method of an object and

supply any additional parameters

Compiling and Running

•Type program into text
editor

•Save
•Open command shell
•Compile into byte codes
javac Hello.java

•Execute byte codes
java Hello

From Source Code to
Running Program

Errors
•Syntax errors
System.ouch.print("...");
System.out.print("Hello);

•Detected by the compiler
•Logic errors
System.out.print("Helo");

•Detected (hopefully) through
testing

