
A Balanced Introduction to

Computer Science, 3/E

David Reed, Creighton University

©2011 Pearson Prentice Hall

ISBN 978-0-13-216675-1

Chapter 8

Algorithms and Programming Languages

1

Algorithms

the central concept underlying all computation is that of the algorithm

 an algorithm is a step-by-step sequence of instructions for carrying out some task

programming can be viewed as the process of designing and implementing
algorithms that a computer can carry out

 a programmer’s job is to:

 create an algorithm for accomplishing a given objective, then

 translate the individual steps of the algorithm into a programming language
that the computer can understand

2

example: programming in JavaScript

 we have written programs that instruct the browser to carry out a particular task

 given the proper instructions, the browser is able to understand and produce the
desired results

Algorithms in the Real World

the use of algorithms is not limited to the domain of
computing
 e.g., recipes for baking cookies

 e.g., directions to your house

there are many unfamiliar tasks in life that we could
not complete without the aid of instructions

 in order for an algorithm to be effective, it must be
stated in a manner that its intended executor can
understand
 a recipe written for a master chef will look different than

a recipe written for a college student

 as you have already experienced, computers are
more demanding with regard to algorithm specifics
than any human could be

3

Designing & Analyzing Algorithms

4 steps to solving problems (George Polya)

1. understand the problem

2. devise a plan

3. carry out your plan

4. examine the solution

4

EXAMPLE: finding the oldest person in a room full of people

1. understanding the problem

 initial condition – room full of people

 goal – identify the oldest person

 assumptions

 a person will give their real birthday

 if two people are born on the same day, they are the same age

 if there is more than one oldest person, finding any one of them is okay

2. we will consider 2 different designs for solving this problem

Algorithm 1

Finding the oldest person (algorithm 1)
1. line up all the people along one wall

2. ask the first person to state his or her name and birthday, then write this
information down on a piece of paper

3. for each successive person in line:

i. ask the person for his or her name and birthday

ii. if the stated birthday is earlier than the birthday on the paper, cross out
old information and write down the name and birthday of this person

when you reach the end of the line, the name and birthday of the oldest person will
be written on the paper

5

Algorithm 2

Finding the oldest person (algorithm 2)
1. line up all the people along one wall
2. as long as there is more than one person in the line, repeatedly

i. have the people pair up (1st with 2nd, 3rd with 4th, etc) – if there is an odd
number of people, the last person will be without a partner

ii. ask each pair of people to compare their birthdays
iii. request that the younger of the two leave the line

when there is only one person left in line, that person is the oldest

6

Algorithm Analysis

determining which algorithm is "better" is not always clear cut
 it depends upon what features are most important to you

 if you want to be sure it works, choose the clearer algorithm

 if you care about the time or effort required, need to analyze performance

algorithm 1 involves asking each person’s birthday and then comparing it to the
birthday written on the page
 the amount of time to find the oldest person is proportional to the number of

people

 if you double the amount of people, the time needed to find the oldest person will
also double

algorithm 2 allows you to perform multiple comparisons simultaneously
 the time needed to find the oldest person is proportional to the number of rounds it

takes to shrink the line down to one person

 which turns out to be the logarithm (base 2) of the number of people

 if you double the amount of people, the time needed to find the oldest person
increases by the cost of one more comparison

7

the words algorithm and logarithm are similar – do not be confused by this
algorithm: a step-by-step sequence of instructions for carrying out a task
logarithm: the exponent to which a base is raised to produce a number
 e.g., 210 = 1024, so log2(1024) = 10

Algorithm Analysis (cont.)

when the problem size is large, performance differences

 can be dramatic

for example, assume it takes 5 seconds to compare birthdays

 for algorithm 1:

 100 people  5*100 = 500 seconds

 200 people  5*200 = 1000 seconds

 400 people  5*400 = 2000 seconds

 . . .

 1,000,000 people  5*1,000,000 = 5,000,000 seconds

 for algorithm 2:

 100 people  5* log2 100  = 35 seconds

 200 people  5* log2 200  = 40 seconds

 400 people  5* log2 400  = 45 seconds

 . . .

 1,000,000 people  5* log2 1,000,000  = 100 seconds

8

Big-Oh Notation

to represent an algorithm’s performance in relation to the size of the

 problem, computer scientists use what is known as Big-Oh notation

 executing an O(N) algorithm requires time proportional to the size of problem

 given an O(N) algorithm, doubling the problem size doubles the work

 executing an O(log N) algorithm requires time proportional to the logarithm of
the problem size

 given an O(log N) algorithm, doubling the problem size adds a constant
amount of work

based on our previous analysis:

 algorithm 1 is classified as O(N)

 algorithm 2 is O(log N)

9

Another Algorithm Example

SEARCHING: a common problem in computer science involves storing and

 maintaining large amounts of data, and then searching the data for

 particular values

 data storage and retrieval are key to many industry applications

 search algorithms are necessary to storing and retrieving data efficiently

 e.g., consider searching a large payroll database for a particular record

 if the computer selected entries at random, there is no assurance that the
particular record will be found

 even if the record is found, it is likely to take a large amount of time

 a systematic approach assures that a given record will be found, and that it
will be found more efficiently

there are two commonly used algorithms for searching a list of items

 sequential search – general purpose, but relatively slow

 binary search – restricted use, but fast

10

Sequential Search

sequential search is an algorithm that involves examining each list item in
sequential order until the desired item is found

sequential search for finding an item in a list

1. start at the beginning of the list

2. for each item in the list

i. examine the item - if that item is the one you are seeking, then you are
done

ii. if it is not the item you are seeking, then go on to the next item in the list

if you reach the end of the list and have not found the item, then it was not in the list

sequential search guarantees that you will find the item if it is in the list

 but it is not very practical for very large databases

 worst case: you may have to look at every entry in the list

11

Binary Search

binary search involves continually cutting the desired search list in half until
the item is found

 the algorithm is only applicable if the list is ordered

 e.g., a list of numbers in increasing order

 e.g., a list of words in alphabetical order

binary search for finding an item in an ordered list

1. initially, the potential range in which the item could occur is the entire list

2. as long as items remain in the potential range and the desired item has not
been found, repeatedly

i. examine at the middle entry in the potential range

ii. if the middle entry is the item you are looking for, then you are done

iii. if the middle entry is greater than the desired item, then reduce the
potential range to those entries left of the middle

iv. if the middle entry is less than the desired item, then reduce the potential
range to those entries right of the middle

by repeatedly cutting the potential range in half, binary search can hone in on
the value very quickly

12

Binary Search Example

13

suppose you have a sorted list of state names, and want to find MD

1. start by examining the middle entry (ND)

since ND comes after MD alphabetically, can eliminate it and all entries that appear to the right

2. next, examine the middle of the remaining entries (IA)

since IA comes before MD alphabetically, can eliminate it and all entries that appear to the left

3. next, examine the middle of the remaining entries (MD)

the desired entry is found

Search Analysis

sequential search
 in the worst case, the item you are looking for is in the last spot in the list (or

not in the list at all)
 as a result, you will have to inspect and compare every entry in the list

 the amount of work required is proportional to the list size
 sequential search is an O(N) algorithm

binary search
 in the worst case, you will have to keep halving the list until it gets down to a

single entry
 each time you inspect/compare an entry, you rule out roughly half the remaining entries

 the amount of work required is proportional to the logarithm of the list size
 binary search is an O(log N) algorithm

14

imagine searching a phone book of the United States (300 million people)
 sequential search requires at most 300 million inspections/comparisons
 binary search requires at most log2(300,000,000) = 29 inspections/comparisons

Another Algorithm Example

Newton’s Algorithm for finding the square root of N

1. start with an initial approximation of 1

2. as long as the approximation isn’t close enough, repeatedly

i. refine the approximation using the formula:

 newApproximation = (oldApproximation + N/oldApproximation)/2

 example: finding the square root of 1024

15

algorithm analysis:

 Newton's Algorithm does converge on the square root because each successive
approximation is closer than the previous one

 however, since the square root might be a non-terminating fraction it is
difficult to define the exact number of steps for convergence

 in general, the difference between the given approximation and the actual
square root is roughly cut in half by each successive refinement

  demonstrates O(log N) behavior

Algorithms and Programming

programming is all about designing and coding algorithms for solving
problems

 the intended executor is the computer or a program executing on that
computer

 instructions are written in programming languages which are more constrained
and exact than human languages

the level of precision necessary to write programs can be frustrating to
beginners

 but it is much easier than it was 50 years ago

 early computers (ENIAC) needed to be wired to perform computations

 with the advent of the von Neumann architecture, computers could be
programmed instead of rewired

 an algorithm could be coded as instructions, loaded into the memory of
the computer, and executed

16

Machine Languages

the first programming languages were known as machine languages
 a machine language consists of instructions that correspond directly to the

hardware operations of a particular machine
 i.e., instructions deal directly with the computer’s physical components including main

memory, registers, memory cells in CPU

 very low level of abstraction

 machine language instructions are written in binary
 programming in machine language is tedious and error prone

 code is nearly impossible to understand and debug

excerpt from a machine language program:

17

High-Level Languages

in the early 1950’s, assembly languages evolved from machine languages
 an assembly language substitutes words for binary codes
 much easier to remember and use words, but still a low level of abstraction

(instructions correspond to hardware operations)

in the late 1950's, high-level languages were introduced

 high-level languages allow the programmer to write code closer to the way
humans think (as opposed to mimicking hardware operations)

 a much more natural way to solve problems
 plus, programs are machine independent

two high level languages that perform the same task (in JavaScript and C++)

18

Program Translation

using a high-level language, the programmer is able to reason at a high-level
of abstraction

 but programs must still be translated into machine language that the
computer hardware can understand/execute

there are two standard approaches to program translation

 interpretation

 compilation

real-world analogy: translating a speech from one language to another

 an interpreter can be used provide a real-time translation

 the interpreter hears a phrase, translates, and immediately speaks the translation

 ADVANTAGE: the translation is immediate

 DISADVANTAGE: if you want to hear the speech again, must interpret all over again

 a translator (or compiler) translates the entire speech offline

 the translator takes a copy of the speech, returns when the entire speech is translated

 ADVANTAGE: once translated, it can be read over and over very quickly

 DISADVANTAGE: must wait for the entire speech to be translated

19

Speech Translation

Interpreter:

20

Translator (compiler):

Interpreters

for program translation, the interpretation approach relies on a program
known as an interpreter to translate and execute high-level statements

 the interpreter reads one high-level statement at a time, immediately
translating and executing the statement before processing the next one

 JavaScript is an interpreted language

21

Compilers

the compilation approach relies on a program known as a compiler to
translate the entire high-level language program into its equivalent
machine-language instructions

 the resulting machine-language program can be executed directly on the
computer

 most languages used for the development of commercial software employ the
compilation technique (C, C++)

22

Interpreters and Compilers

tradeoffs between interpretation and compilation

interpreter

 produces results almost immediately

 particularly useful for dynamic, interactive features of web pages

 program executes more slowly (slight delay between the execution of
statements)

compiler

 produces machine-language program that can run directly on the underlying
hardware

 program runs very fast after compilation

 must compile the entire program before execution

 used in large software applications when speed is of the utmost importance

23

