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Conditional Repetition 
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Conditional Repetition 

an if statement is known as a control statement 

 it is used to control the execution of other JavaScript statements 

 

 provides for conditional execution 

 is useful for solving problems that involve choices 

 either do this or don't, based on some condition (if) 

 either do this or do that, based on some condition (if-else) 
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closely related to the concept of conditional execution is conditional repetition 

 many problems involve repeating some task over and over until a specific 
condition is met 

 

 e.g., rolling dice until a 7 is obtained 

 e.g., repeatedly prompting the user for a valid input 

 

 in JavaScript, while loops provide for conditional repetition 

 



While Loops 

a while loop resembles an if statement in that its behavior is dependent on a 
Boolean condition.   

 however, the statements inside a while loop’s curly braces (a.k.a. the loop body) 
are executed repeatedly as long as the condition remains true 

 general form: 

 

while (BOOLEAN_TEST) { 

    STATEMENTS_EXECUTED_AS_LONG_AS_TRUE 

} 
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when the browser encounters a while loop, it first evaluates the Boolean test 

 if the test succeeds, then the statements inside the loop are executed in order, 
just like an if statement 

 once all the statements have been executed, program control returns to the 
beginning of the loop 

 the loop test is evaluated again, and if it succeeds, the loop body statements are 
executed again 

 this process repeats until the Boolean test fails 



While Loop Example 

example: roll two dice repeatedly until doubles are obtained 
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sample output: 

note: even though while loops and if 
statements look similar, they are very 
different control statements 

 an if statement may execute its code 
once or not at all 

 a while loop may execute its code an 
arbitrary number of times (including 
not at all) 
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Avoiding redundancy 
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note the redundancy in the code 

 must perform the initial dice roll before the loop begins 

 then, have to repeatedly re-roll inside the loop 
 

can avoid this by either: 

 "priming the loop" with default values that allow the loop to execute 

 defining a Boolean "flag" to determine when the loop should continue 



Loop Tests 

note: the loop test defines the condition under which the loop continues 

 this is often backwards from the way we think about loops 

 

 e.g., read input until you get a positive number (i.e., until input > 0) 

 

while (input <= 0) { . . . } 

 

 e.g., keep rolling dice until you get doubles (i.e., until roll1 == roll2) 

 

while (roll1 != roll2) { . . . } 

 

 e.g., keep rolling dice until you get double fours (i.e., until roll1 == 4 && roll2 = 4) 

 

while (roll1 != 4 || roll2 != 4) { . . . } 
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DeMorgan's Law: !(X && Y) == (!X || !Y) 

 !(X || Y) == (!X && !Y) 



Counter-Driven Loops 

since a while loop is controlled by a condition, it is usually impossible to 
predict the number of repetitions that will occur 

 e.g., how many dice rolls will it take to get doubles? 

 

a while loop can also be used to repeat a task some fixed number of times 

 implemented by using a while loop whose test is based on a counter 

 general form of counter-driven while loop: 

 

repCount = 0; 

while (repCount < DESIRED_NUMBER_OF_REPETITIONS) { 

    STATEMENTS_FOR_CARRYING_OUT_DESIRED_TASK 

    repCount = repCount + 1; 

} 

 

 the counter is initially set to 0 before the loop begins, and is incremented at the 
end of the loop body 

 the counter keeps track of how many times the statements in the loop body have 
executed 

 when the number of repetitions reaches the desired number, the loop test fails and the 
loop terminates 
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Counter-Driven Loops 
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examples:  



Counter-
driven Dice 
Roller 
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while loop executes 
totalRolls times 

each time, the dice are rolled 
and checked for doubles 



Infinite Loops 

the browser will repeatedly execute statements in the body of a while loop 

as long as the loop test succeeds (evaluates to true) 

 it is possible that the test will always succeed and the loop will run forever 

 

repCount = 0; 

while (repCount < 10) { 

    document.getElementById('outputDiv').inerHTML = 

      document.getElementById('outputDiv').inerHTML + 'HOWDY<br>'; 

} 

 

 a loop that runs forever is known as an infinite loop (or a black hole loop) 

 

 to guard against infinite loops, make sure that some part of the loop test 
changes inside the loop  

 in the above example, repCount is not updated in the loop so there is no chance of 

terminating once the loop starts 

 

 an infinite loop may freeze up the browser 

 sometimes, clicking the Stop button will suffice to interrupt the browser 

 other times, you may need to restart the browser 
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Variables and Repetition 

any variable can be employed to control the number of loop repetitions and 
the variable can be updated in various ways 

 

example: countdown 
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Example: Hailstone Sequences 

an interesting unsolved problem in mathematics: hailstone sequence 

 

1. start with any positive integer 

2. if the number is odd, then multiply the number by three and add one; 
otherwise, divide it by two 

3. repeat as many times as desired 

 

 for example:  5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, … 
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it is conjectured that, no matter what positive integer you start with, you will 
always end up in the 4-2-1 loop 

 this has been verified for all starting number up to 5,764,607,523,034,234,880 

 but, it still has not been proven to hold for ALL starting numbers 


