
A Balanced Introduction to

Computer Science, 3/E

David Reed, Creighton University

©2011 Pearson Prentice Hall

ISBN 978-0-13-216675-1

Chapter 13

Conditional Repetition

1

Conditional Repetition

an if statement is known as a control statement

 it is used to control the execution of other JavaScript statements

 provides for conditional execution

 is useful for solving problems that involve choices

 either do this or don't, based on some condition (if)

 either do this or do that, based on some condition (if-else)

2

closely related to the concept of conditional execution is conditional repetition

 many problems involve repeating some task over and over until a specific
condition is met

 e.g., rolling dice until a 7 is obtained

 e.g., repeatedly prompting the user for a valid input

 in JavaScript, while loops provide for conditional repetition

While Loops

a while loop resembles an if statement in that its behavior is dependent on a
Boolean condition.

 however, the statements inside a while loop’s curly braces (a.k.a. the loop body)
are executed repeatedly as long as the condition remains true

 general form:

while (BOOLEAN_TEST) {

 STATEMENTS_EXECUTED_AS_LONG_AS_TRUE

}

3

when the browser encounters a while loop, it first evaluates the Boolean test

 if the test succeeds, then the statements inside the loop are executed in order,
just like an if statement

 once all the statements have been executed, program control returns to the
beginning of the loop

 the loop test is evaluated again, and if it succeeds, the loop body statements are
executed again

 this process repeats until the Boolean test fails

While Loop Example

example: roll two dice repeatedly until doubles are obtained

4

sample output:

note: even though while loops and if
statements look similar, they are very
different control statements

 an if statement may execute its code
once or not at all

 a while loop may execute its code an
arbitrary number of times (including
not at all)

Dice
Roller
Page

5

Avoiding redundancy

6

note the redundancy in the code

 must perform the initial dice roll before the loop begins

 then, have to repeatedly re-roll inside the loop

can avoid this by either:

 "priming the loop" with default values that allow the loop to execute

 defining a Boolean "flag" to determine when the loop should continue

Loop Tests

note: the loop test defines the condition under which the loop continues

 this is often backwards from the way we think about loops

 e.g., read input until you get a positive number (i.e., until input > 0)

while (input <= 0) { . . . }

 e.g., keep rolling dice until you get doubles (i.e., until roll1 == roll2)

while (roll1 != roll2) { . . . }

 e.g., keep rolling dice until you get double fours (i.e., until roll1 == 4 && roll2 = 4)

while (roll1 != 4 || roll2 != 4) { . . . }

7

DeMorgan's Law: !(X && Y) == (!X || !Y)

 !(X || Y) == (!X && !Y)

Counter-Driven Loops

since a while loop is controlled by a condition, it is usually impossible to
predict the number of repetitions that will occur

 e.g., how many dice rolls will it take to get doubles?

a while loop can also be used to repeat a task some fixed number of times

 implemented by using a while loop whose test is based on a counter

 general form of counter-driven while loop:

repCount = 0;

while (repCount < DESIRED_NUMBER_OF_REPETITIONS) {

 STATEMENTS_FOR_CARRYING_OUT_DESIRED_TASK

 repCount = repCount + 1;

}

 the counter is initially set to 0 before the loop begins, and is incremented at the
end of the loop body

 the counter keeps track of how many times the statements in the loop body have
executed

 when the number of repetitions reaches the desired number, the loop test fails and the
loop terminates

8

Counter-Driven Loops

9

examples:

Counter-
driven Dice
Roller

10

while loop executes
totalRolls times

each time, the dice are rolled
and checked for doubles

Infinite Loops

the browser will repeatedly execute statements in the body of a while loop

as long as the loop test succeeds (evaluates to true)

 it is possible that the test will always succeed and the loop will run forever

repCount = 0;

while (repCount < 10) {

 document.getElementById('outputDiv').inerHTML =

 document.getElementById('outputDiv').inerHTML + 'HOWDY
';

}

 a loop that runs forever is known as an infinite loop (or a black hole loop)

 to guard against infinite loops, make sure that some part of the loop test
changes inside the loop

 in the above example, repCount is not updated in the loop so there is no chance of

terminating once the loop starts

 an infinite loop may freeze up the browser

 sometimes, clicking the Stop button will suffice to interrupt the browser

 other times, you may need to restart the browser

11

Variables and Repetition

any variable can be employed to control the number of loop repetitions and
the variable can be updated in various ways

example: countdown

12

Countdown
Page

13

Example: Hailstone Sequences

an interesting unsolved problem in mathematics: hailstone sequence

1. start with any positive integer

2. if the number is odd, then multiply the number by three and add one;
otherwise, divide it by two

3. repeat as many times as desired

 for example: 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

14

it is conjectured that, no matter what positive integer you start with, you will
always end up in the 4-2-1 loop

 this has been verified for all starting number up to 5,764,607,523,034,234,880

 but, it still has not been proven to hold for ALL starting numbers

