MAT2440 - Exam 2 Review

- 1. Let $A = \{3, 4, 5\}$ and $B = \{0, 1, 2, 3, 6\}$. Assuming that the universal set $U = \{0, 1, 2, 3, 4, 5, 6\}$ list the elements of each of the following sets.
 - (a) $\overline{A} \cap B$
 - (b) $A \cup B$
 - (c) B A
 - (d) $\overline{A \cup B}$
- 2. Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 3. Draw the appropriate Venn diagram for each of these combinations of sets A, B, and C.
 - (a) $(A-B) \cap C$
 - (b) $A \cap B \cap C$
 - (c) $A \cup \overline{C}$
 - (d) $\overline{A \cup (B \cap C)}$
- 4. Determine if the following functions are one-to-one and/or onto.
 - (a) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = -2x + 7
 - (b) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ where f(m, n) = |m|
 - (c) $f: \mathbb{Z} \to \mathbb{Z}$ where $f(n) = n^2$
- 5. Suppose that $g: A \to B$ and $f: B \to C$ are functions.
 - (a) If g and f are onto, then $f \circ g$ is onto.
 - (b) If g and f are one-to-one, then $f \circ g$ is one-to-one.
- 6. How many bytes of data are required to encode n bits of data where n equals 7? 17? 1001? (1 byte = 8 bits)
- 7. Find the first five terms a_0, a_1, a_2, a_3 of each sequence:
 - (a) $a_n = n^3 + \frac{2}{n+1}$ for $n \ge 0$ and (b) $a_n = (-2)^n$ for $n \ge 0$
- 8. Find the terms a_1, a_2, a_3 for the sequence given by the following recurrence relation: $a_n = 2n + a_{n-1}$ for $n \ge 1$ and $a_0 = 2$.

- 9. Find the values of each of the sums.
 - (a) $\sum_{j=0}^{4} (1 + (-2)^j)$ (b) $\sum_{i=1}^{3} \sum_{j=1}^{3} (i-j)$
- 10. Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a bijection between the set of positive integers and that set.
 - (a) Integers not divisible by 3
 - (b) Real numbers with decimal representations containing only 0s and 1s.
 - (c) $\{1,2\} \times \mathbb{N}$.
- 11. Write the pseudocode for an algorithm that takes a list of n integers and produces as output the sum of the numbers in the list.
- 12. Write the pseudocode for an algorithm that takes in a list of n integers and produces as output the smallest difference between consecutive numbers in the list.
- 13. Write the pseudocode for an algorithm that finds both the largest and smallest integers in a finite sequence of integers.
- 14. Use bubble sort to sort 3, 1, 5, 7 4, showing the lists obtained at each step.
- 15. Use insertion sort to sort 3, 1, 5, 7 4, showing the lists obtained at each step.
- 16. Use the greedy algorithm to make change using quarters, an 18 cent coin, dimes, nickels and pennies for 77, 43, and 24 cents.