MAT 2440 - HW2 Solutions

September 2016

Section 1.4

Exercise 6

\mathbf{d}

There is a student that hasn't visited North Dakota.

\mathbf{e}

Not every student has visited North Dakota.

f

All students have not visited North Dakota.

Exercise 8

с

There is an animal x such that if x is a rabbit, then it hops.

\mathbf{d}

There is an animal x such that it is a rabbit and it hops.

Exercise 10

b

 $\forall x \left(C(x) \lor D(x) \lor F(x) \right)$

С

 $\exists x \left(C(x) \wedge F(x) \wedge \neg D(x) \right)$

d $\neg \exists x \left(C(x) \land F(x) \land D(x) \right)$ or $\forall x \neg \left(C(x) \land F(x) \land D(x) \right)$

Exercise 36

a If x = 1 then $x^2 = x$

b If x = 0 then |x| = 0

Section 1.5

Exercise 10

b

 $\forall y F(\text{Evelyn}, y)$

С

 $\forall x \exists y F(x,y)$

\mathbf{d}

 $\neg \exists x \forall y F(x,y)$

Exercise 32

\mathbf{a}

 $\forall z \exists y \exists x \neg T(x, y, z)$

\mathbf{b}

 $\forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$

Section 1.6

Exercise 16

а

Let E(x) denote "x is enrolled in the university" and let D(x) denote "x has lived in a dormitory".

Step	Reason
1. $\forall x (E(x) \to D(x))$	Premise
2. $E(Mia) \rightarrow D(Mia)$	Universal instantiation
3. $\neg D$ (Mia	Premise
4. $\neg E(Mia)$	Modus tollens using steps 2 and 3 $$

1		
	r	1
2	7	

Let P(x) be "x is a convertible car" and Q(x) be "x is fun to drive". The premises are $\forall x (C(x) \rightarrow D(x))$. By applying universal instantiation, we get $C(\text{Isaac's car}) \rightarrow D(\text{Issac's car})$. Given the premise " $\neg C(\text{Isaac's car})$ ", this argument is of the form: $((p \rightarrow q) \lor \neg p) \rightarrow \neg q$. This uses the fallacy of denying the hypothesis.

С

Let A(x) denote "x is an action movie" and let Q(x) denote "Quincy likes movie x". Then the premise is $\forall x (A(x) \to Q(x))$. By applying universal instantiation, we get $A(\text{Eight Men Out}) \to Q(\text{Eight Men Out})$. Given the premise "Q(Eight Men Out)", this argument is of the form $((p \to q) \land q) \to p$. This uses the fallacy of affirming the conclusion.