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𝜆
Lambda Calculus



Functions in Mathematics

We are familiar with defining a function by a formula:

𝑓 ∶ ℝ → ℝ
𝑓 (𝑥) = 𝑥2

The same definition may be made without assigning the name 𝑓:

𝑥 ↦ 𝑥2

In computer science and type theory, we use lambdas to denote the same:

𝜆𝑥. 𝑥2



Inductive Definitions

We can construct the natural numbers by saying that a Nat is either:

Z or S of another Nat

We can capture this definition using a grammar:

n = Z
| S n

From this, we can conclude that (S (S (S Z))) is a Nat



Untyped Lambda Calculus

We construct a universe of functions defined by their formulas (terms)
Very solipsistically, these functions will act on other functions

t = x Variable
| 𝜆 x. t Abstraction
| t t Application

Some examples of lambda terms:
𝑎 – an unbound variable
𝜆𝑥. 𝑥 – the identity
𝜆𝑥. 𝑎 – a constant function
𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧) – takes a function and argument and applies the function twice



Reduction

If 𝑓 (𝑥) = 𝑥2, then 𝑓 (3) = 32

The usual semantics of functions defined by formulas is that if you apply such a
function to an argument, then this reduces to the body of the function, but with
all occurrences of the variable replaced with the argument (substitution)
For lambda terms, we assert that:

(𝜆𝑥. 𝑡) 𝑠 ⇒ 𝑡 [𝑥 ↦ 𝑠]

This is known as the 𝛽 law



An Example of Reduction

In the following trace, we repeatedly do two steps at once:
(𝜆𝑛. 𝜆𝑚. 𝜆𝑠. 𝜆𝑧. 𝑛 𝑠 (𝑚 𝑠 𝑧)) (𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)) (𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧))

⇒ 𝜆𝑠. 𝜆𝑧. (𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)) 𝑠 ((𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)) 𝑠 𝑧)

⇒ 𝜆𝑠. 𝜆𝑧. (𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)) 𝑠 (𝑠 (𝑠 𝑧))

⇒ 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 (𝑠 𝑧)))

This is a calculation that 2 + 2 = 4 in the Church encoding of natural numbers



Normalisation

In the previous computational trace, the final expression

𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 (𝑠 𝑧)))

was such that no further reduction rules applied to it
Such an expression is considered a normal form
On the other hand, consider the term:

(𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥)

Since it is a function abstraction being applied to an argument, the 𝛽 law applies
However, this will repeatedly reduce to itself; there is no hope of normalisation!



A
Types



Minimal Logic

Let 𝐴, 𝐵, 𝐶, … be a collection of uninterpreted atomic propositions
We can form compound propositions with implication →, for example:

𝐴 → 𝐵 → 𝐴

We then define what it would mean to prove such a proposition
In our proof systems we will have judgments of the form Γ ⊢ 𝑇

Here, Γ is a list of assumptions (a context)



Inference Rules

The system of minimal logic has three proof rules:

𝑇 ∈ Γ
Γ ⊢ 𝑇

𝐴𝑠𝑠

Γ, 𝑇 ⊢ 𝑆
Γ ⊢ 𝑇 → 𝑆

→𝐼

Γ ⊢ 𝑇 → 𝑆 Γ ⊢ 𝑇
Γ ⊢ 𝑆

→𝐸



Two Derivations

It is best to read these from bottom to top:

𝐴, 𝐵 ⊢ 𝐴
𝐴𝑠𝑠

𝐴 ⊢ 𝐵 → 𝐴
→𝐼

⊢ 𝐴 → 𝐵 → 𝐴
→𝐼

𝐴, 𝐴 → 𝐵 ⊢ 𝐴 → 𝐵
𝐴𝑠𝑠

𝐴, 𝐴 → 𝐵 ⊢ 𝐴
𝐴𝑠𝑠

𝐴, 𝐴 → 𝐵 ⊢ 𝐵
→𝐸

𝐴 ⊢ (𝐴 → 𝐵) → 𝐵
→𝐼

⊢ 𝐴 → (𝐴 → 𝐵) → 𝐵
→𝐼



Constructive Logic

The BHK interpretation of a proof of an implication 𝑇 → 𝑆 is a construction
that, when given a proof of 𝑇, produces a proof of 𝑆

We will identify the 𝑡𝑦𝑝𝑒 𝑇 with the space of proofs of 𝑇

A proof of 𝑇 → 𝑆, then, is a function from 𝑇 to 𝑆

Given a proof 𝑓 of 𝑇 → 𝑆, and a proof 𝑎 of 𝑇, the application 𝑓 𝑎 is a proof of 𝑆

But we already have an excellent language for discussing functions and
application!



Simply Typed Lambda Calculus

Syntax:
T = X

| T → T

t = x
| 𝜆 (x : T). t
| t t

Here 𝑋 ranges over type variables and 𝑥 ranges over term variables

Expressions defined by 𝑇 are types, and by 𝑡 are terms



Typing Rules

Contexts will now consist of type annotations for variables
We augment our proof rules for minimal logic with term annotations:

𝑥 ∶ 𝑇 ∈ Γ
Γ ⊢ 𝑥 ∶ 𝑇

𝑉 𝑎𝑟

Γ, 𝑥 ∶ 𝑇 ⊢ 𝑡 ∶ 𝑆
Γ ⊢ 𝜆 (𝑥 ∶ 𝑇). 𝑡 ∶ 𝑇 → 𝑆

→𝐼

Γ ⊢ 𝑓 ∶ 𝑇 → 𝑆 Γ ⊢ 𝑎 ∶ 𝑇
Γ ⊢ 𝑓 𝑎 ∶ 𝑆

→𝐸

A term 𝑡 is said to be well-typed in context Γ if we have Γ ⊢ 𝑡 ∶ 𝑇 for some 𝑇

We only work with well typed terms!



Fundemental Metatheory

With the way that we have set up the theory, we have:
a] Every well typed term has a unique type
b] Every well typed term has a unique typing derivation
c] Every minimal logic derivation corresponds to an unique proof term
(up to renaming variables)
d] Typing derivations can be reconstructed by a structurally recursive algorithm
e] Computation preserves types



Proof Trees with Term Augmentations

𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ 𝑎 ∶ 𝐴
𝑉 𝑎𝑟

𝑎 ∶ 𝐴 ⊢ 𝜆 (𝑏 ∶ 𝐵). 𝑎 ∶ 𝐵 → 𝐴
→𝐼

⊢ 𝜆 (𝑎 ∶ 𝐴). 𝜆 (𝑏 ∶ 𝐵). 𝑎 ∶ 𝐴 → 𝐵 → 𝐴
→𝐼

𝑎 ∶ 𝐴, 𝑓 ∶ 𝐴 → 𝐵 ⊢ 𝑓 ∶ 𝐴 → 𝐵
𝑉 𝑎𝑟

𝑎 ∶ 𝐴, 𝑓 ∶ 𝐴 → 𝐵 ⊢ 𝑎 ∶ 𝐴
𝑉 𝑎𝑟

𝑎 ∶ 𝐴, 𝑓 ∶ 𝐴 → 𝐵 ⊢ 𝑓 𝑎 ∶ 𝐵
→𝐸

𝑎 ∶ 𝐴 ⊢ 𝜆 (𝑓 ∶ 𝐴 → 𝐵). 𝑓 𝑎 ∶ (𝐴 → 𝐵) → 𝐵
→𝐼

⊢ 𝜆 (𝑎 ∶ 𝐴). 𝜆 (𝑓 ∶ 𝐴 → 𝐵). 𝑓 𝑎 ∶ 𝐴 → (𝐴 → 𝐵) → 𝐵
→𝐼

As you can see, the annotations on variables can be recovered from the type
(at least as far as these examples are concerned)



Deep Metatheory

Theorem (Normalisation):
Every well-typed term reduces to a normal form in a finite number of steps

Corollary:
The term (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥) is not well-typed (for any variable annotations)



Γ
Objective Metatheory



Motivation

When we implement a programming language, how do we know that we haven’t
make a mistake in the definition of substitution or in handling names?

For that matter, if attempt to specify STLC on paper, we have a multitude of
decisions to make: names or de Bruijn indicies, explicit or direct substitution, etc.
Are we talking about the same language?

Solution [Lambek 1980, known in folklore for ∼10 years prior]:
Here is a one sentence definition of STLC:
a freely generated contextual cartesian closed category



Contexts and Indexed Lists
Given a type 𝑡𝑦, we define Ctx𝑡𝑦 to be the inductive type generated by:
B an empty context ∅ ∶ Ctx𝑡𝑦, and
B for every Γ ∶ Ctx𝑡𝑦 and 𝐴 ∶ 𝑡𝑦, an extended context Γ ⊹ 𝐴 ∶ Ctx𝑡𝑦

Given a family 𝑒𝑙 ∶ 𝑡𝑦 → Type, we define the family Els𝑒𝑙 ∶ Ctx𝑡𝑦 → Type to be
the indexed inductive type generated by:
B an empty indexed list ! ∶ Els𝑒𝑙 ∅, and
B for every 𝜎 ∶ Els𝑒𝑙 Γ and 𝑡 ∶ 𝑒𝑙 𝐴, a constructed indexed list

𝜎 ⊕ 𝑡 ∶ Els𝑒𝑙 ( Γ ⊹ 𝐴 )

Given a family 𝑡𝑚 ∶ Ctx𝑡𝑦 → 𝑡𝑦 → Type, we define the family
Tms𝑡𝑚 ∶ Ctx𝑡𝑦 → Ctx𝑡𝑦 → Type by Tms𝑡𝑚 Γ Δ = Els𝑡𝑚 Γ Δ

In general, things indexed by a context and a type will be called terms, and
elements of Tms𝑡𝑚 Γ Δ are called substitutions



Intrinsically Typed de Bruijn Variables

Given a type 𝑡𝑦, we define the familly Var𝑡𝑦 ∶ Ctx𝑡𝑦 → 𝑡𝑦 → Type to be the
indexed inductive type generated by:
B a zero variable 𝑧𝑣 ∶ Var𝑡𝑦 (Γ ⊹ 𝐴) 𝐴, and
B for every 𝑣 ∶ Var𝑡𝑦 Γ 𝐴, a successor variable 𝑠𝑣 𝑣 ∶ Var𝑡𝑦 (Γ ⊹ 𝐵) 𝐴

Var𝑡𝑦 Γ 𝐴 is not a subtype of Fin length Γ; the first constructor secretly hides
something analogous to the refl constructor of a Martin-Löf identity type!
Variables can be used to index into indexed lists via the function
derive ∶ Els𝑒𝑙 Γ → Var𝑡𝑦 Γ 𝐴 → 𝑒𝑙 𝐴



Renamings

Variables are indexed by a contest and type, and can thus be thought of as terms
Substitutions made of variables are known as renamings: Ren𝑡𝑦 ≡ Tms Var𝑡𝑦

We can define a category structure on renamings:

For 𝑣 ∶ Var𝑡𝑦 Δ 𝐴, 𝜎 ∶ Ren𝑡𝑦 Γ Δ, define 𝑣 J 𝜎 K ∶ Var𝑡𝑦 Γ 𝐴 by derive 𝜎 𝑣

For 𝜎 ∶ Ren𝑡𝑦 Δ Σ, 𝜏 ∶ Ren𝑡𝑦 Γ Δ, define 𝜎 ⊚ 𝜏 ∶ Ren𝑡𝑦 Γ Σ by map (–J 𝜏 K) 𝜎

For 𝐴 ∶ 𝑡𝑦, 𝜎 ∶ Ren𝑡𝑦 Γ Δ define W1 𝐴 𝜎 ∶ Ren𝑡𝑦 (Γ ⊹ 𝐴) Δ by map 𝑠𝑣 𝜎, and
W2 𝐴 𝜎 ∶ Ren𝑡𝑦 (Γ ⊹ 𝐴) (Δ ⊹ 𝐴) by W1 𝐴 𝜎 ⊕ 𝑧𝑣

Define 𝑖𝑑 Γ ∶ Ren𝑡𝑦 Γ Γ by repeatedly applying 𝑊2 to !

We can also prove left and right identity laws, as well as associativity



Simple Contextual Categories

A simple contextual category consists of the following:
(i) a type 𝑡𝑦 of types,
B from which we derive the type 𝑐𝑡𝑥 ≡ Ctx𝑡𝑦 of contexts,

(ii) for each Γ ∶ 𝑐𝑡𝑥 and 𝐴 ∶ 𝑡𝑦, a type 𝑡𝑚 Γ 𝐴 of terms,
B from which we derive, for each Γ Δ ∶ 𝑐𝑡𝑥, the type 𝑡𝑚𝑠 Γ Δ ≡ Tms𝑡𝑚 Γ Δ

of substitutions
(iii) for each 𝑡 ∶ Tms Δ 𝐴 and 𝜎 ∶ tms Γ Δ, a term 𝑡 J 𝜎 K ∶ 𝑡𝑚𝑠 Γ 𝐴
B from which we derive, for each 𝜎 ∶ 𝑡𝑚𝑠 Δ Σ and 𝜏 ∶ 𝑡𝑚𝑠 Γ Δ, the

substitution 𝜎 ⊚ 𝜏 ≡ map (–J 𝜏 K) 𝜎 ∶ tms Γ Δ
(iv) for each Γ ∶ 𝑐𝑡𝑥, a substitution 𝑖𝑑 Γ ∶ 𝑡𝑚𝑠 Γ Γ



Simple Contextual Categories [cont.]

The above are subject to the following laws:
(v) for every 𝜎 ∶ 𝑡𝑚𝑠 Γ Δ, we have 𝑖𝑑 Δ ⊚ 𝜎 = 𝜎
(vi) for every 𝑡 ∶ 𝑡𝑚 Γ 𝐴, we have 𝑡 J 𝑖𝑑 Γ K = 𝑡
B from which we derive, by applying the above in each component, that for

every 𝜎 ∶ 𝑡𝑚𝑠 Γ Δ, we have 𝜎 ⊚ 𝑖𝑑 Γ = 𝜎
(vii) for every 𝑡 ∶ 𝑡𝑚 Σ 𝐴, 𝜎 ∶ 𝑡𝑚𝑠 Δ Σ, and 𝜏 ∶ 𝑡𝑚𝑠 Γ Δ, we have

𝑡 J 𝜎 K J 𝜏 K = 𝑡 J 𝜎 ⊚ 𝜏 K
B from which we derive, by applying the above in each component, that for

every 𝜎 ∶ 𝑡𝑚𝑠 Σ Ω, 𝜏 ∶ 𝑡𝑚𝑠 Δ Σ, and 𝜇 ∶ 𝑡𝑚𝑠 Γ Δ, we have
(𝜎 ⊚ 𝜏) ⊚ 𝜇 = 𝜎 ⊚ (𝜏 ⊚ 𝜇)

(viii) each 𝑡𝑚 Γ 𝐴 is an h-set
B from which we derive that every 𝑡𝑚𝑠 Γ Δ is an h-set



Weakening Theory

Substitutions are indexed lists of terms; the first thing that we can do with a
non-empty list is apply first and rest to it
We obtain 𝑧 ∶ 𝑡𝑚 (Γ ⊹ 𝐴) 𝐴 and 𝜋 ∶ 𝑡𝑚𝑠 (Γ ⊹ 𝐴) Γ via 𝑖𝑑 (Γ ⊹ 𝐴) ≡ 𝜋 ⊕ 𝑧

For 𝐵 ∶ 𝑡𝑦 and 𝑡 ∶ 𝑡𝑚 Γ 𝐴 define W1 𝐴 𝑡 ∶ 𝑡𝑚 (Γ ⊹ 𝐵) 𝐴 by 𝑡 J 𝜋 K

We can prove that for 𝑡 ∶ 𝑡𝑚 Δ 𝐴, 𝜎 ∶ 𝑡𝑚𝑠 Γ Δ, and 𝑠 ∶ 𝑡𝑚 Γ 𝐵, that
(𝑊1 𝐵 𝑡) J 𝜎 ⊕ 𝑠 K = 𝑡 J 𝜎 K



Variable Theory

More interestingly, we can use variables to index components of the identity,
which we will also call variables
Let 𝑣𝑎𝑟 ≡ Var𝑡𝑦, and for 𝑣 ∶ 𝑣𝑎𝑟 Γ 𝐴, let makeVar 𝑣 ≡ derive (𝑖𝑑 Γ) 𝑣

We are able to show that (makeVar 𝑣) J 𝜎 K = derive 𝜎 𝑣

Via the following relation, makeVar (𝑠𝑣 𝑣) = 𝑊1 𝐴 (makeVar 𝑣), relating
variables to their successors, we are able to prove the following functoriality law
makeVar (𝑣 J 𝜎 K) = (makeVar 𝑣) J makeRen 𝜎 K

It is also easy to show that makeRen (𝑖𝑑 Γ) = 𝑖𝑑 Γ

This establishes that any contextual category is the target of a contextual
structure preserving functor from an internal contextual (pre)category of
renamings



Contextual CCCs

A simple contextual category is cartesian closed provided that it is endowed with
the following structure:
(i) for every 𝐴, 𝐵 ∶ 𝑡𝑦, an arrow type 𝐴 ⇛ 𝐵
(ii) for every 𝑡 ∶ 𝑡𝑚 (Γ ⊹ 𝐴) 𝐵, an abstraction Λ 𝑡 ∶ 𝑡𝑚 Γ (𝐴 ⇛ 𝐵)
(iii) for every 𝑡 ∶ 𝑡𝑚 Γ (𝐴 ⇛ 𝐵) and 𝑠 ∶ 𝑡𝑚 Γ 𝐴, an application 𝑎𝑝𝑝 𝑡 𝑠 ∶ 𝑡𝑚 Γ 𝐵
B from which we derive, for every 𝑡 ∶ 𝑡𝑚 Γ (𝐴 ⇛ 𝐵), the categorical app

𝐴𝑝𝑝 𝑡 ≡ 𝑎𝑝𝑝 (𝑊1 𝐴 𝑡) 𝑧 ∶ 𝑡𝑚 (Γ ⊹ 𝐴) 𝐵
Subject to the following laws:
(iv) naturality of Λ: (Λ 𝑡) J 𝜎 K = Λ (𝑡 J 𝑊2 𝐴 𝜎 K)
(v) the 𝛽-law: 𝑎𝑝𝑝 (Λ 𝑡) 𝑠 = 𝑡 J 𝑖𝑑 Γ ⊕ 𝑠 K
(vi) the 𝜂-law: 𝑡 = Λ (𝐴𝑝𝑝 𝑡)



What is STLC?

To wrap up, we define the notion of a contextual functor, and what is means for
a contextual functor between contextual CCCs to preserve the CCC structure

In the case of STLC with one base type, we work in the category of pointed
contextual CCCs and CCC and basepoint preserving contextual functors

We then say that an implementation of STLC is an initial object of this category

Main Result: every implementation of STLC admits a normalisation theorem,
which, in particular, implies the decidable equality of terms



u
Normalisation by Evaluation



STLC Syntax

In this section, we will work with a concrete syntax
We define STLC types Ty to be the inductive type generated by:
B A base type Base ∶ Ty
B For every 𝐴, 𝐵 ∶ Ty, an arrow type 𝐴 ⇒ 𝐵 ∶ Ty

We derive from this the types Ctx, Var, and Ren, specialised to the notion of Ty
We define the indexed inductive type Tm ∶ Ctx → Ty → Type to be the
inductive family generated by:
B For every 𝑣 ∶ Var Γ 𝐴, a variable, V 𝑣 ∶ Tm Γ 𝐴
B For every 𝑡 ∶ Tm (Γ ⊹ 𝐴) 𝐵, an abstraction, Lam 𝑡 ∶ Tm Γ (𝐴 ⇒ 𝐵)
B For every 𝑡 ∶ Tm Γ (𝐴 ⇒ 𝐵) and 𝑠 ∶ Tm Γ 𝐴, an application,

App 𝑡 𝑠 ∶ Tm Γ 𝐵



STLC Syntax in Agda
In Agda, we can write the above defenitions as follows:

data Ty : Type where
Base : Ty
_⇒_ : Ty → Ty → Ty

Ctx = Ctx Ty
Var = V ar Ty
Ren = Ren Ty

data Tm : Ctx → Ty → Type where
V : {Γ : Ctx} {A : Ty} (v : Var Γ A) → Tm Γ A
Lam : {Γ : Ctx} {A B : Ty} (t : Tm (Γ ⊹ A) B) → Tm Γ (A ⇒ B)
App : {Γ : Ctx} {A B : Ty} (t : Tm Γ (A ⇒ B)) (s : Tm Γ A) → Tm Γ B

Note that we have neither defined substitution nor included any reduction laws,
so this on its own is not a CCC Category



Evaluation
Let’s imagine that the above yields a CCC Category 𝜎𝜄𝜈

In constructing a CCC preserving functor 𝜎𝜄𝜈 → 𝒞, the only degree of freedom is
the 𝑋 ∶ ty to which we send Base:

J 𝐴 K ∶ ty
J Base K = 𝑋
J 𝐴 ⇒ 𝐵 K = J 𝐴 K ⇛ J 𝐵 K

J 𝑡 K ∶ tm J Γ K J 𝐴 K
J V 𝑣 K = makeVar 𝑣
J Lam 𝑡 K = Λ J 𝑡 K
J App 𝑡 𝑠 K = app J 𝑡 K J 𝑠 K



Sets
Set is Cartesian Closed, and can be given a contextual structure
The eliminator into Set is:

X : Type
X = {!!}

el : Ty → Type
el Base = X
el (A ⇒ B) = el A → el B

els : Ctx → Type
els Γ = Els el Γ

Eval : {Γ : Ctx} {A : Ty} → Tm Γ A → els Γ → el A
Eval (V v) es = derive es v
Eval (Lam t) es = 𝜆 e → (Eval t) (es ⊕ e)
Eval (App t s) es = (Eval t es) (Eval s es)



Church Numerals

In order to test our eliminator, we define some Church arithmetic:

ChurchType : Ty → Ty
ChurchType A = (A ⇒ A) ⇒ A ⇒ A

Two : {Γ : Ctx} {A : Ty} → Tm Γ (ChurchType A)
Two = Lam (Lam (App (V (sv zv)) (App (V (sv zv)) (V zv))))

Plus : {Γ : Ctx} {A : Ty} → Tm Γ (ChurchType A ⇒ ChurchType A ⇒ ChurchType A)
Plus = Lam (Lam (Lam (Lam (App (App (V (sv (sv (sv zv)))) (V (sv zv)))

(App (App (V (sv (sv zv))) (V (sv zv))) (V zv))))))



Two Plus Two

We form the expression representing 2 + 2 and evaluate it:

sum : Tm ∅ (ChurchType Base)
sum = App (App Plus Two) Two

semantic = Eval sum

Typing ‘C-c C-d semantic RET’ into emacs yields that semantic has type
els ∅ → (X → X) → X → X
Similarly, ‘C-c C-n semantic RET’ yields that semantic normalises to
𝜆 𝑒𝑠 𝑠 𝑧 → 𝑠 (𝑠 (𝑠 (𝑠 𝑧)))

The function representing this expression has the form of a Church numeral
We just need some way of extracting a normal form form this!



Normals and Neutrals

The following mutually inductive types allow us to express precisely the 𝛽-reduced
and 𝜂-long normal forms:
We define the indexed inductive type Ne ∶ Ctx → Ty → Type to be the
inductive family generated by:
B For every 𝑣 ∶ Var Γ 𝐴, a variable, VN 𝑣 ∶ Ne Γ 𝐴
B For every 𝑀 ∶ Ne Γ (𝐴 ⇒ 𝐵) and 𝑁 ∶ Nf Γ 𝐴, an application,

APP 𝑀 𝑁 ∶ Ne Γ 𝐵

We define the indexed inductive type Nf ∶ Ctx → Ty → Type to be the
inductive family generated by:
B For every 𝑀 ∶ Ne Γ Base, an embedded neutral NEU 𝑀 ∶ Nf Γ Base
B For every 𝑁 ∶ Nf (Γ ⊹ 𝐴) 𝐵, an abstraction, LAM 𝑁 ∶ Nf Γ (𝐴 ⇒ 𝐵)



Normals and Neutrals in Agda

In Agda we have:

data Nf : Ctx → Ty → Type
data Ne : Ctx → Ty → Type

data Ne where
VN : {Γ : Ctx} {A : Ty} → Var Γ A → Ne Γ A
APP : {Γ : Ctx} {A B : Ty} → Ne Γ (A ⇒ B) → Nf Γ A → Ne Γ B

data Nf where
NEU : {Γ : Ctx} → Ne Γ Base → Nf Γ Base
LAM : {Γ : Ctx} {A B : Ty} → Nf (Γ ⊹ A) B → Nf Γ (A ⇒ B)



A First Attempt at Normalisation

All that we know at the moment is how to eliminate into Set, so let’s take what
we know and go as far as possible
Now, normal forms of type 𝐴 are not a set because we’ve left the context
unspecified; let’s wishfully put all of the contexts together and ignore their
presence when forming applications
Thus, if 𝐴 is a type, then Nf 𝐴 is a set, and for 𝑀 ∶ Ne (𝐴 ⇒ 𝐵) and 𝑁 ∶ Nf 𝐴,
the application APP 𝑀 𝑁 always makes sense
We are going to choose to set X = Nf Base. The elements of J 𝐴 K are then
known as the semantic elements of type 𝐴



Quote and Unquote

Given a term 𝑡 ∶ Tm Γ 𝐴, we have that J 𝑡 K ∶ J Γ K → J 𝐴 K

In order to obtain a normal form, we need a recipes for:
a] turning a semantic element into a normal form (quote)
b] cooking up semantic elements (unquote)
We will see that the natural domain for defining unquote is on neutral terms. We
thus want to define (by mutual induction) the following functions for each type 𝐴:

q𝐴 ∶ J 𝐴 K → Nf 𝐴
u𝐴 ∶ Ne 𝐴 → J 𝐴 K



Unquote

The definition of unquote is the more direct one
At Base, we just need to turn a neutrals into a normal
At 𝐴 ⇒ 𝐵, we have a neutral 𝑀 ∶ Ne (𝐴 ⇒ 𝐵) and a semantic element
𝑠 ∶ J 𝐴 K
We can turn that semantic element into a normal form using quote, form the
application, and then unquote in order to obtain a semantic element

u𝐴 (𝑀 ∶ Ne A) ∶ J 𝐴 K
uBase (𝑀 ∶ Ne Base) = NEU 𝑀

u𝐴 ⇒ 𝐵 (𝑀 ∶ Ne (𝐴 ⇒ 𝐵)) = (𝑠 ∶ J 𝐴 K) ↦ u𝐵 (APP 𝑀 (q𝐴 𝑠))

Note that forming the application required 𝑀 being a neutral term



Quote

Quote is a bit more subtle
At Base, the semantic elements are already normal forms
At 𝐴 ⇒ 𝐵, we have a function 𝑓 ∶ J 𝐴 K → J 𝐵 K
We can quote a semantic element of type 𝐵, and then apply LAM to get a
normal form of type 𝐴 ⇒ 𝐵
All that we need now is a semantic element of type 𝐴; we obtain this by
unquoting a neutral variable

q𝐴 (𝑠 ∶ J 𝐴 K) ∶ Nf 𝐴
qBase (𝑁 ∶ Nf Base) = 𝑁

q𝐴 ⇒ 𝐵 (𝑓 ∶ J 𝐴 K → J 𝐵 K) = LAM (q𝐵 (𝑓 (u𝐴 (VN zv))))



Putting it Together

We have:

J 𝑡 K ∶ J Γ K → J 𝐴 K
q𝐴 ∶ J 𝐴 K → Nf 𝐴
u𝐴 ∶ Ne 𝐴 → J 𝐴 K

In order to cook up the neutral forms to unquote into a indexed list of semantic
elements in J Γ K, we use the same trick as before and use neutral variables
Instead of making them all zero variables, though, we consider the identity
neutral substitution idNes Γ ∶ Nes Γ Γ. We then have:

q𝐴 (J 𝑡 K (usΓ (idNe Γ))) ∶ Nf 𝐴



Accounting for Contexts

By adding in contexts, we are no longer evaluating in Set
At the base type, we have X = Nf – Base ∶ Ctx → Type
So the terms of our new theory are ‘context indexed set families’
We thus have that J 𝐴 KΓ is a set for every context Γ

At the base type J Base KΓ = Nf Γ Base
At arrow types, we naively set J 𝐴 ⇒ 𝐵 KΓ = J 𝐴 KΓ → J 𝐵 KΓ

Quote and unquote get refined to functions:

q𝐴 , Γ ∶ J 𝐴 KΓ → Nf Γ 𝐴
u𝐴 , Γ ∶ Ne Γ 𝐴 → J 𝐴 KΓ



Changing Contexts

The most obvious sleight of hand in our previous formulation came when we used
a zero variable to produce a neutral term of type 𝐴 in the definition of quote
Suppose that we are defining q𝐴 ⇒ 𝐵 , Γ 𝑓

Then 𝑓 is a function 𝑓 ∶ J 𝐴 KΓ → J 𝐵 KΓ

Meanwhile zv naturally has type Var (Γ ⊹ 𝐴) 𝐴, thus

q𝐴 , Γ ⊹ 𝐴 (VN 𝑧𝑣) ∶ J 𝐴 K Γ ⊹ 𝐴

So we have a problem, because we need to evaluate 𝑓 on a semantic element in a
more general context



Changing Contexts [cont.]

To see how to resolve this, suppose that 𝑓 arises from unquoting
We previously had:

u𝐴 ⇒ 𝐵 , Γ 𝑀 𝑠 = u𝐵 , Γ (APP 𝑀 (q𝐴 , Γ 𝑠))

We are expecting 𝑠 ∶ J 𝐴 KΓ, but what if instead we get 𝑠 ∶ J 𝐴 KΓ ⊹ 𝐴?
In order to form the application, we need to weaken 𝑀 to context Γ ⊹ 𝐴

This can be done if we are given a renaming of type Ren (Γ ⊹ 𝐴) Γ



Renaming Normals and Neutrals

We define the contravariant action of renamings on normals and neutrals
We just propagate into subexpressions until we hit a variable
Variables can be replaced with variables (or more generally neutrals), but not
with arbitrary terms

_[_]Ne : {Δ Γ : Ctx} {A : Ty} → Ne Γ A → Ren Δ Γ → Ne Δ A
_[_]Nf : {Δ Γ : Ctx} {A : Ty} → Nf Γ A → Ren Δ Γ → Nf Δ A

VN v [ 𝜎 ]Ne = VN (derive 𝜎 v)
APP M N [ 𝜎 ]Ne = APP (M [ 𝜎 ]Ne) (N [ 𝜎 ]Nf)

NEU M [ 𝜎 ]Nf = NEU (M [ 𝜎 ]Ne)
LAM {A = A} N [ 𝜎 ]Nf = LAM (N [ W2Ren A 𝜎 ]Nf)



Correcting the Exponential

With our notion of the action of renamings, suppose we are given:
𝑀 ∶ Ne Γ (𝐴 ⇒ 𝐵), 𝜎 ∶ Ren Δ Γ, and 𝑠 ∶ J 𝐴 KΔ, then:

u𝐵, Δ (APP (𝑀 [ 𝜎 ]Ne) (q𝐴, Δ 𝑠)) ∶ J 𝐵 KΔ

This suggests that we need to update our definition of J 𝐴 ⇒ 𝐵 K Γ

El : Ctx → Ty → Type
El Γ Base = Nf Γ Base
El Γ (A ⇒ B) = {Δ : Ctx} → Ren Δ Γ → El Δ A → El Δ B

We have thus strengthened the power of semantic elements to be defined on
semantic elements in any context Δ, so long as Δ is related to Γ by a renaming



Quote and Unquote

With this we get new definitions of quote and unquote:

q : {Γ : Ctx} {A : Ty} → El Γ A → Nf Γ A
u : {Γ : Ctx} {A : Ty} → Ne Γ A → El Γ A

q {A = Base} N = N
q {A = A ⇒ B} 𝑓 = LAM (q (𝑓 𝜋Ren (u (VN zv))))

u {A = Base} M = NEU M
u {A = A ⇒ B} M 𝜎 𝑠 = u (APP (M [ 𝜎 ]Ne) (q 𝑠))



Evaluation

A term 𝑡 ∶ Tm Γ 𝐴 is supposed to evaluate to a term between J Γ K and
J 𝐴 K in the contextual category of context indexed sets
In order to make sense of this, we define:

Els : Ctx → Ctx → Type
Els Δ Γ = Tms El Δ Γ

And we say that J 𝑡 K is a Δ-indexed family of morphisms Els Δ Γ → El Δ 𝐴



The Action of Renamings on Semantic Elements

When defining eval, we encounter the case of J Lam 𝑡 K

As input we take 𝑠𝑠 ∶ Els Δ Γ and need to produce something of type
El Δ (𝐴 ⇒ 𝐵)

In order to define that, we take additional inputs 𝜎 ∶ Ren Σ Δ and 𝑠 ∶ El Σ 𝐴

J 𝑡 K can take something of type Els Σ (Γ ⊹ 𝐴), but in order to have this we
need to weaken 𝑠𝑠:

_[_]El : {Δ Γ : Ctx} {A : Ty} → El Γ A → Ren Δ Γ → El Δ A
_[_]El {A = Base} N 𝜎 = N [ 𝜎 ]Nf
_[_]El {A = A ⇒ B} 𝑓 𝜎 𝜏 𝑠 = 𝑓 (𝜎 ∘Ren 𝜏) 𝑠



The Definition of Evaluation

We can now define eval:

eval : {Γ Δ : Ctx} {A : Ty} → Tm Δ A → Els Γ Δ → El Γ A
eval (V v) 𝑠s = derive 𝑠s v
eval (Lam t) 𝑠s 𝜎 𝑠 = eval t (mapEls _[ 𝜎 ]El 𝑠s ⊕ 𝑠)
eval {Γ} (App t s) 𝑠s = eval t 𝑠s (idRen Γ ) (eval s 𝑠s)

As before, we have all of the ingredients necessary to normalise:

norm : {Γ : Ctx} {A : Ty} → Tm Γ A → Nf Γ A
norm {Γ} t = q (eval t (mapEls (u ∘ VN) (idRen Γ )))

That took only 26 lines of code!



Testing This Out
First, we give an embedding of normal forms into syntax:

𝜄Ne : {Γ : Ctx} {A : Ty} → Ne Γ A → Tm Γ A
𝜄Nf : {Γ : Ctx} {A : Ty} → Nf Γ A → Tm Γ A

𝜄Ne (VN v) = V v
𝜄Ne (APP M N) = App (𝜄Ne M) (𝜄Nf N)

𝜄Nf (NEU M) = 𝜄Ne M
𝜄Nf (LAM N) = Lam (𝜄Nf N)

We now consider the example of 2 + 2 from before:

2+2=4 : 𝜄Nf (norm sum) ≡ Lam (Lam (App (V (sv zv)) (App (V (sv zv))
(App (V (sv zv)) (App (V (sv zv)) (V zv))))))

2+2=4 = refl


