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Abstract

Category theory gives a mathematical characterization of naturality but not of canonicity. The
purpose of this paper is to develop the logical theory of canonical maps based on the broader
demonstration that the dual notions of elements & distinctions are the basic analytical concepts
needed to unpack and analyze morphisms, duality, canonicity, and universal constructions in
Sets, the category of sets and functions. The analysis extends directly to other Sets-based
concrete categories (groups, rings, vector spaces, etc.). Elements and distinctions are the building
blocks of the two dual logics, the Boolean logic of subsets and the logic of partitions. The partial
orders (inclusion and re�nement) in the lattices for the dual logics de�ne morphisms. The thesis
is that the maps that are canonical in Sets are the ones that are de�ned (given the data of the
situation) by these two logical partial orders and by the compositions of those maps.
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1 Elements & Distinctions Analysis

1.1 Introduction

Category theory gives a mathematical characterization of naturality but not of canonicity, the canon-
ical nature of certain maps. The purpose of this paper is to present the logical theory of canonical
maps that provides such a characterization. That logical theory of canonical maps is one of the main
results in the broader analysis showing that the dual notions of "elements & distinctions" (or "its &
dits") are the basic analytical concepts needed to unpack and analyze morphisms, duality, canonicity
(or canonicalness), and universal constructions in the Sets, the category of sets and functions. The
analysis extends directly to other Sets-based concrete categories (groups, rings, vector spaces, etc.)
where the objects are sets with a certain type of structure and the morphisms are set functions
that preserve or re�ect that structure. Then the elements & distinctions-based de�nitions can be
abstracted in purely arrow-theoretic way for abstract category theory.

One way to approach the concepts of "elements" (or "its") and "distinctions" (or "dits") is
to start with the category-theoretic duality between subsets and quotient sets (= partitions =
equivalence relations): "The dual notion (obtained by reversing the arrows) of �part�[subobject] is
the notion of partition." [8, p. 85]. That motivates the two dual forms of mathematical logic: the
Boolean logic of subsets and the logic of partitions ([3]; [4]). If partitions are dual to subsets, then
what is the dual concept that corresponds to the notion of elements of a subset? The notion dual to
the elements of a subset is the notion of the distinctions of a partition (pairs of elements in distinct
blocks of the partition).

1.2 The logical theory of canonical maps based on the its & dits analysis

Jean-Pierre Marquis [9] has raised the question of characterizing canonical maps in mathematics in
general and category theory in particular. Category theory gives a mathematical notion of "natural-
ity" but not of canonicalness or canonicity. Marquis gives the intuitive idea (maps de�ned "without
any arbitrary decision"), a number of examples (most of which we will analyze in Sets), and a set
of criteria stated in terms of limits (and thus dually for colimits).

We are now in a position to circumscribe more precisely what we want to include in
the notion of canonical morphisms or maps.
1. Morphisms that are part of the data of a limit are canonical morphisms; for in-

stance, the projection morphisms that are part of the notion of a product;
2. The unique morphism from a cone to a limit determined by a universal property

is a canonical morphism: and
3. In particular, the unique isomorphism that arise between two candidates for a limit

is a canonical morphism. [9, p. 101]

The elements & distinctions (or its & dits) analysis provides a mathematical characterization
of "canonical maps" in Sets (and thus in Sets-based concrete categories) that satis�es the Marquis
criteria.

The canonical maps and the unique canonical factor morphisms in the universal mapping prop-
erties in Sets are always constructed in the two ways that maps are constructed from the logical
partial orders in the two basic logics, the logic of subsets and the logic of partitions. In the powerset
Boolean algebra of subsets } (U) of U , the partial order is the inclusion relation S � T for S; T � U ,
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which induces the canonical injection S ! T . That is the way canonical injective maps are de�ned
from the partial order of inclusion on subsets.

In the dual algebra of partitions �(U) on U (i.e., the lattice of partitions on U enriched with the
implication operation on partitions1), the partial order is the re�nement relation between partitions
and it induces a canonical map using re�nement. A partition � = fB;B0; :::g on a set U is a set
of non-empty subsets of U (called blocks, B;B0; :::) that are mutually exclusive (i.e., disjoint) and
jointly exhaustive (i.e., whose union is U). It might be noticed that the empty set ;, which has no
nonempty subsets, is the empty partition on U = ;.2 One could also de�ne a partition on U as the
set of inverse-images f�1 (y) for y 2 f (U) for any function f : U ! Y . The union of the inverse
images is all of U since a function transmits elements and the inverse images are disjoint because a
function re�ects distinctions (see below for this analysis of a function).

Given another partition � = fC;C 0; :::g on U , a partition � is said to re�ne � (or � is re�ned
by �), written � - �, if for every block B 2 �, there is a block C 2 � (necessarily unique) such
that B � C. If we denote the set of distinctions or dits of a partition (ordered pairs of elements in
di¤erent blocks) by dit (�), the ditset of �, then just as the partial order in } (U) is the inclusion
of elements, so the re�nement partial order on �(U) is the inclusion of distinctions, i.e., � - � i¤
(if and only if) dit (�) � dit (�). And just as the inclusion ordering on subsets induces a canonical
map between subsets, so the re�nement ordering � - � on partitions induces a canonical surjection
between partitions, namely � ! � where B 2 � is taken to the unique C 2 � where B � C. That is
the way canonical surjective maps are de�ned from the partial order of re�nement on partitions.

These canonical injections and surjections are built into the partial orders of the lattice (or
algebraic) structure of the two dual logics of subsets and partitions; they logically de�ne the �atomic�
canonical maps in Sets, and other canonical maps in Sets arise out of their compositions. This
logical theory of canonical maps is that all "canonical" maps in Sets arise in these two ways or by
compositions of them�which then extends to Sets-based concrete categories. The thesis cannot be
proven since "canonical" is an intuitive notion. But we will show that all the canonical maps and
unique factor maps in the universal constructions (limits and colimits) in Sets arise in this way from
the partial orders of the dual lattices (or algebras) of subsets and partitions�which thus satis�es the
Marquis criteria. This logical basis for this theory of canonical maps accounts for the name "logical."
In Sets-based concrete categories, there may be maps that are part of the structure of the structured
sets which can be taken as given �by-de�nition�canonical maps in those categories and which may
be composed with the canonical maps from the underlying category Sets (that have to arise in the
speci�ed ways) to make more canonical morphisms.

1.3 Initial & terminal objects and epi-mono factorization in Sets

The top of the powerset Boolean algebra } (U) is U , where each subset S � U induces the canonical
injection S ! U . The bottom of the Boolean algebra, the null set ;, is included in any set, e.g.,
; � U , so the induced morphism ; ! U is the canonical map that makes ; the initial object in Sets
(taking U as any set).

The top of the partition algebra �(U) is the discrete partition 1U = ffuggu2U of all singletons.
Since every partition � is re�ned by 1U , i.e., � - 1U , there is the canonical surjection 1U �= U ! �
that takes the singleton fug or just u (since blocks of 1U are in one-to-one correspondence with
the elements of U) to the unique block B such that u 2 B, i.e., to that point B 2 � when �
is considered as a quotient set. The bottom of the partition algebra (or lattice) is the indiscrete
partition (nicknamed the "blob") 0U = fUg with only one block U that identi�es all the points in

1 In [4], the partition algebra was de�ned as the partition lattice enriched with the implication and nand operations
on partitions. But for purposes of comparisons with Boolean or Heyting algebras, it su¢ ces to consider only the
implication in addition to the join and meet. In any case, this does not a¤ect the analysis here where the lattice
structure su¢ ces.

2Thanks to Paul Blain Levy and Alex Simpson for emphasizing to me the role of empty partition for the consistent
development of the whole theory, e.g., as the inverse-image partition on the domain of the empty function ; ! Y .
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U so, as a quotient set, 0U is just the one-element set 1. And 0U is re�ned by all partitions, e.g.,
0U - 1U . That re�nement relation induces the unique map from the blocks of 1U (i.e., the elements
of U) to the blocks or rather the block of 0U , i.e., induces the canonical map U ! 1 that makes
�the�one-element set 1 into the terminal object in Sets (taking U as any set).

Thus the maps induced by the top-bottom inclusion/re�nement relations in the two logical
partial orders give the canonical maps for the initial and terminal objects in Sets.

Dualities Subset logic Partition logic

�Elements� Elements u of S Dits (u; u0) of �
Partial order Inclusion S � T � - �: dit (�) � dit (�)
Canonical map S ! T � ! �

Top of partial order U all elements 1U , dit(1U ) = U2 ��, all dits
Bottom of partial order ; no elements 0U , dit(0U ) = ;, no dits
Extremal objects Sets ; � U , ; ! U 0U - 1U , U ! 1

Table 1: Elements and distinctions in the dual logics

Another simple application of the elements & distinctions analysis is the construction of the
canonical surjection and canonical injection in the epi-mono factorization of any set function:
f : X ! Y . The data in the function provide the coimage (or inverse-image) partition f�1 =�
f�1 (y) : y 2 f (X)

	
on X and the image subset f (X) � Y . Since f�1 is re�ned by the dis-

crete partition on X, f�1 - 1X , the induced surjection is the canonical map X � f (X). The
inclusion f (X) � Y induces the injection f (X) � Y and the epi-mono factorization of f is:
f : X ! Y = X � f (X)� Y .

The thesis of the logical theory of canonical maps in Sets is that the canonical surjections are
de�ned by re�nement-induced maps from the logic of partitions lattice, the canonical injections
are de�ned by inclusion-induced maps from the Boolean logic of subsets lattice, and the other
canonical maps, e.g., the canonical factor maps of the universal constructions in Sets, are de�ned
by compositions of these canonical maps.

1.4 Quantitative measures of elements & distinctions

The quantitative (normalized) counting measure of the elements in a subset gives the classical
Laplace-Boole notion of �logical�probability.

The quantitative (normalized) counting measure of the distinctions in a partition gives the notion
of logical entropy that underlies the Shannon notion of entropy (which is not a measure in the sense
of measure theory) ([2]; [5]; [6]).

That realizes the idea expressed in Gian-Carlo Rota�s Fubini Lectures [10] (and in his lectures at
MIT), where he noted that in view of duality between partitions and subsets, the �lattice of partitions
plays for information the role that the Boolean algebra of subsets plays for size or probability� [7,
p. 30] or symbolically:

information
partitions �

probability
subsets.

Since �Probability is a measure on the Boolean algebra of events� that gives quantitatively the
�intuitive idea of the size of a set�, we may ask by �analogy�for some measure to capture a property
for a partition like �what size is to a set.� [10, p. 67] The answer is the number of distinctions or
dits. The logical entropy h(�) = jdit(�)j

jU�U j of a partition � on a non-empty �nite set U is that measure
on the lattice of partitions on U , i.e., the normalized counting measure on the isomorphic lattice
of partition relations (= ditsets), the binary relations that are the complements of the equivalence
relations on U �U . Since the logical entropy h (�) is also a normalized measure, it has a probability
interpretation, i.e., h (�) is the probability that in two independent draws from U , one will get a
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distinction of �, i.e., � distinguishes, just as Pr (S) is interpreted as the probability that in one draw
from U , one will get an element of S � U , i.e., S occurs.3

Duality in quant. measures Subset logic Partition logic

�Outcomes� Elements u of U Distinctions (u; u0) 2 U � U
�Events� Subsets S of U Partitions � of U

�Event occurs� u 2 S (u; u0) 2 dit (�)
Logical measure Pr (S) = jSj

jU j h (�) = jdit(�)j
jU�U j

Interpretation Prob. event S occurs Prob. partition � distinguishes
Table 2: Logical measures on elements and distinctions

2 The Elements & Distinctions Treatment of Morphisms in
Sets

2.1 Set functions transmit elements and re�ect distinctions

The duality between elements ("its") of a subset and distinctions ("dits") of a partition already
appears in the very notion of a function between sets. The concepts of elements and distinctions
provide the natural notions to specify the binary relations, i.e., subsets R � X � Y , that de�ne
functions f : X ! Y .

A binary relation R � X � Y transmits elements if for each element x 2 X, there is an ordered
pair (x; y) 2 R for some y 2 Y .

A binary relation R � X � Y re�ects elements if for each element y 2 Y , there is an ordered
pair (x; y) 2 R for some x 2 X.

A binary relation R � X � Y transmits distinctions if for any pairs (x; y) and (x0; y0) in R, if
x 6= x0, then y 6= y0.

A binary relation R � X � Y re�ects distinctions if for any pairs (x; y) and (x0; y0) in R, if
y 6= y0, then x 6= x0.

The dual role of elements and distinctions can be seen if we translate the usual characterization
of the binary relations that de�ne functions into the elements-and-distinctions language. In the usual
treatment, a binary relation R � X � Y de�nes a function X ! Y if it is de�ned everywhere on X
and is single-valued. But "being de�ned everywhere" is the same as transmitting (or "preserving")
elements, and being single-valued is the same as re�ecting distinctions so the more natural de�nition
is:

a binary relation R is a function if it transmits elements and re�ects distinctions.

What about the other two special types of relations, i.e., those which transmit (or preserve)
distinctions or re�ect elements? The two important special types of functions are the injections and
surjections, and they are de�ned by the other two notions:

a function is injective if it transmits distinctions, and
a function is surjective if it re�ects elements.

3As a measure, the notions of simple, compound, conditional, and mutual logical entropy satsify the usual Venn
diagram relationships. Shannon [11] de�ned those compound notions for his entropy to also satisfy the Venn diagram
relations even though Shannon entropy is not a measure. This is accounted for by the fact that there is a uniform
but non-linear dit-to-bit transform from the logical entropy formulas to the Shannon entropy formulas that preserves
Venn diagrams. [5] Thus the notion of logical entropy gives the basic logical theory of information and the Shannon�s
"mathematical theory of commuication" [11] is a transform speci�cally for the theory of coding and communication.
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Given a set function f : X ! Y with domain X and codomain Y , a subset of the codomain Y is
determined as the image f(X) � Y , and a partition on the domain X is determined as the coimage
or inverse-image ff�1(y)gy2f(X). It might also be noted that the empty set of ordered pairs ; � Y
satis�es the de�nition of a function ; ! Y ; its image is the empty subset ; � Y and its coimage or
inverse-image is the empty partition on ;.

2.2 Abstracting to arrow-theoretic de�nitions

One of our themes is that the concepts of elements and distinctions unpack and analyze the category
theoretic concepts in the basic �ur-category�Sets, and they are abstracted into purely arrow-theoretic
de�nitions in abstract category theory. For instance, the elements & distinctions de�nitions of in-
jections and surjections yield "arrow-theoretic" characterizations which can then be applied in any
category to provide the usual category-theoretic dual de�nitions of monomorphisms (injections for
set functions) and epimorphisms (surjections for set functions).

Two set functions f; g : X � Y are di¤erent, i.e., f 6= g, if there is an element x of X such that
their values f (x) and g (x) are a distinction of Y , i.e., f (x) 6= g (x). Hence if f and g are followed by
a function h : Y ! Z, then the compositions hf; hg : X ! Y ! Z must be di¤erent if h preserves
distinctions (so that the distinction f(x) 6= g (x) is preserved as hf (x) 6= hg (x)), i.e., if h is injective.
Thus in the category of sets, h being injective is characterized by: for any f; g : X � Y , "f 6= g
implies hf 6= hg" or equivalently, "hf = hg implies f = g" which is the general category-theoretic
de�nition of a monomorphism or mono.

In a similar manner, if we have functions f; g : X � Y where f 6= g, i.e., where there is an
element x of X such that their values f (x) and g (x) are a distinction of Y , then suppose the
functions are preceded by a function h : W ! X. Then the compositions fh; gh : W ! X ! Y
must be di¤erent if h re�ects elements (so that the element x where f and g di¤er is sure to be in
the image of h), i.e., if h is surjective. Thus in the category of sets, h being surjective is characterized
by: for any f; g : X � Y , "f 6= g implies fh 6= fg" or "fh = gh implies f = g" which is the general
category-theoretic de�nition of an epimorphism or epi.

Hence the dual interplay of the notions of elements & distinctions can be seen as yielding
the arrow-theoretic characterizations of injections and surjections which are lifted into the general
categorical dual de�nitions of monomorphisms and epimorphisms.

2.3 Duality interchanges elements & distinctions

The reverse-the-arrows duality of category theory is the abstraction from the reversing of the roles of
elements & distinctions (or its & dits) in dualizing Sets to Setsop. That is, a concrete morphism in
Setsop is a binary relation, which might be called a cofunction, that preserves distinctions and re�ects
elements�instead of preserving elements and re�ecting distinctions. Equivalently, when we reverse
the direction of a binary relation de�ning a function, we just interchanged "re�ects" and "preserves"
(or "transmits"). Thus with every binary relation f � X � Y that is a function f : X ! Y , there is
a binary relation fop � Y �X that is a cofunction fop : Y ! X in the opposite direction.

The reverse-the-arrows duality can also be applied within Sets: For the universal constructions
in Sets, the interchange in the roles of elements and distinctions interchanges each construction and
its dual: products and coproducts, equalizers and coequalizers, and in general limits and colimits.
That is then abstracted to make the reverse-the-arrows duality in abstract category theory.

This begins to illustrate our theme that the language of elements & distinctions is the conceptual
language in which the category of sets and functions is written, and abstract category theory gives
the abstract-arrows version of those de�nitions. Hence we turn to universal constructions for further
analysis.
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3 The Elements & Distinctions Analysis of Products and Co-
products

3.1 The coproduct in Sets

Given two sets X and Y in Sets, the idea of the coproduct is to create the set with the maximum
number of elements starting with X and Y . Since X and Y may overlap, we must make two copies of
the elements in the intersection. Hence the relevant operation is not the union of sets X [Y but the
disjoint union XtY . To take the disjoint union of a set X with itself, a copy X� = fx� : x 2 Xg of X
is made so that X tX can be constructed as X [X�. In a similar manner, if X and Y overlap, then
X t Y = X [ Y �. Then the inclusions X;Y � X t Y , give the canonical injections iX : X ! X t Y
and iY : Y ! X t Y .

The universal mapping property for the coproduct in Sets is that given any other �cocone�
of maps f : X ! Z and g : Y ! Z, there is a unique map f t g : X t Y ! Z such that

X
iX! X t Y ftg! Z = X

f! Z and Y
iY! X t Y ftg! Z = Y

g! Z.

X
iX�! X t Y iY � Y
&f 9! #ftg g .

Z
Coproduct diagram

From the data f : X ! Z and g : Y ! Z, we need to construct the unique factor map
X t Y ! Z. The map f contributes the coimage partition f�1on X and g contributes the coimage
partition g�1 on Y . The disjoint union of these two partitions on di¤erent sets gives the partition
f�1 t g�1 on the disjoint union X tY of the sets. That partition is re�ned by the discrete partition
on the disjoint union, i.e., f�1 t g�1 - 1XtY . Hence each element w 2 X t Y (i.e., each block
of 1XtY ) is contained in a unique block of the form f�1 (z) for some z 2 f (X) or a block of the
form g�1 (z) for some z 2 g (Y ), so the map ftg �rst takes w to the z depending on the case. That
re�nement-de�ned map is the surjection of XtY onto f (X) [ g (Y ) � Z and that inclusion de�nes
the injection that completes the de�nition of the factor map f t g : X t Y ! Z.

3.2 The product in Sets

Given two sets X and Y in Sets, the idea of the product is to create the set with the maximum
number of distinctions starting with X and Y . The product in Sets is usually constructed as the
set of ordered pairs in the Cartesian product X �Y . But to emphasize the point about distinctions,
we might employ the same trick of �marking�the elements of Y , particularly when Y = X, with an
asterisk. Then an alternative construction of the product in Sets is the set of unordered pairsX�Y =
ffx; y�g : x 2 X; y� 2 Y �g which in the case of Y = X would beX�X = ffx; x�g : x 2 X;x� 2 X�g.
This alternative construction of the product (isomorphic to the Cartesian product) emphasizes the
distinctions formed from X and Y so the ordering in the ordered pairs of the usual construction
X � Y is only a way to make the same distinctions.

The set X de�nes a partition �X on X � Y whose blocks are Bx = f(x; y) : y 2 Y g = fxg � Y
for each x 2 X, and Y de�nes a partition �Y whose blocks are By = f(x; y) : x 2 Xg = X �fyg for
each y 2 Y . Since �X ; �Y - 1X�Y , the induced maps (surjections if X and Y are non-empty) are
the canonical projections pX : X � Y ! X and pY : X � Y ! Y .

The universal mapping property for the product in Sets is that given any other �cone�of maps

f : Z ! X and g : Z ! Y , there is a unique map [f; g] : Z ! X � Y such that Z
[f;g]! X � Y pX!

X = Z
f! X and Z

[f;g]! X � Y pY! Y = Z
g! Y .
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Z
.f 9! #[f;g] g &

X
pX � X � Y pY�! Y
Product diagram

From the data f : Z ! X and g : Z ! Y , we need to construct the unique factor map
[f; g] : Z ! X � Y . The map f contributes the coimage f�1 partition on Z and g contributes the
coimage g�1 partition on Z so we have the partition join f�1 _ g�1 (in the lattice of partitions on
Z) whose blocks have the form f�1 (x) \ g�1 (y). The discrete partition 1Z re�nes f�1 _ g�1 as
partitions on Z so for each singleton fzg, there is a block of the form f�1 (x) \ g�1 (y) containing
z and this de�nes the canonical map Z ! f (Z) � g (Z) � X � Y where z 7�! (x; y), and that
inclusion gives the injection f (Z) � g (Z) ! X � Y that completes the construction of the factor
map [f; g] : Z ! X � Y .

3.3 Example: How duality interchanges products and coproducts

To show how duality interchanges universal constructions and their duals, consider the product
in the category Setsop of sets and cofunctions. In Sets, the product X � Y has the maximum
number of distinctions from X and Y , so in Setsop, the product set X �op Y has the maximum
number of elements (interchanging distinctions and elements), i.e., X �op Y = X t Y . And each
cofunction (binary relation that preserves distinctions and re�ects elements in one direction) is in
fact a binary relation in the other direction (interchange "re�ects" and "preserves") that re�ects
distinctions and preserves elements, i.e., a function. Hence the two cofunctions popX : X �op Y ! X
and popY : X �op Y ! Y that re�ect distinctions, are the same as two functions that preserve
distinctions, i.e., the two injections iX : X ! X t Y and iY : Y ! X t Y . For the UMP, the two
cofunctions fop : Z ! X and gop : Z ! Y in Setsop are two functions f : X ! Z and g : Y ! Z
in the opposite direction in Sets, and the unique cofunction [fop; gop] : Z ! X �op Y satisfying the
commutativity properties in Setsop is the same as the function f t g : X t Y ! Z satisfying the
opposite commutativity properties in Sets. Thus the product in Setsop is the same as the coproduct
in Sets. Hence the concrete duality of interchanging elements and distinction�or equivalently for
binary relations, interchange "re�ects" and "preserves" (or "transmits")�just interchanges the dual
universal constructions of products and coproducts.

4 The Elements & Distinctions Analysis of Equalizers and
Coequalizers

4.1 The coequalizer in Sets

For the equalizer and coequalizer, the data is not just two sets but two parallel maps f; g : X � Y .
Then each element x 2 X, gives us a pair f (x) and g (x) so we take the equivalence relation �
de�ned on Y that is generated by f (x) � g (x) for any x 2 X. Then the coequalizer is the quotient
set C = Y= � . When � is represented as a partition on Y , then it is re�ned by the discrete partition
1Y on Y , and that re�nement de�nes the canonical surjective map can: : Y ! Y= �.

For the universality property, let h : Y ! Z be such that hf = hg. Then we need to show there
is a unique re�nement/inclusion-de�ned map h� : Y= �! Z such that h�can: = h.

X
f

�
g

Y
can:! Y= �

&h 9! #h�

Z
Coequalizer diagram
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We already have one partition � on Y which was generated by f (x) � g (x). Since hf = hg, we
know that hf (x) = hg (x) so the coimage h�1 has to at least identify f (x) and g (x) (and perhaps
identify other elements) which means that h�1 -� as partitions on Y . Hence for each element of
Y= �, i.e., each block b in the partition �, there is a unique block h�1 (z) containing that block,
so the induced map is h� (b) = z onto h (Y ) � Z and the inclusion de�nes the injection h (Y ) ! Z
which completes the construction of h� : Y= �! Z:

4.2 The equalizer in Sets

The data for the equalizer construction is the same two parallel maps f; g : X � Y . The equalizer
is the E = fx 2 X : f (x) = g (x)g � X so the map induced by that inclusion is the canonical map
can: : E ! X.

The universal property is that for any other map h : Z ! X such that fh = gh, then 9!h� :
Z ! E such that h�can: = h.

E
can:! X

f

�
g

Y

9! "h� h%
Z
Equalizer diagram

For each x 2 h (Z), fh (z) = gh (z) implies h (z) = x 2 E so h (Z) � E. The coimage partition
h�1 =

�
h�1 (x) : x 2 h (Z)

	
on Z is re�ned by the discrete partition on Z and that as usual de�nes

the surjection of Z ! h (Z) and then h (Z) � E induces the injection h (Z) ! Z to complete the
de�nition of the canonical factor map h� : Z ! E.

5 The Elements & Distinctions Analysis of Cartesian and
Co-Cartesian Squares

5.1 The pushout or co-Cartesian square in Sets

It is a standard theorem of category theory that if a category has products and equalizers, then
it has all limits, and if it has coproducts and coequalizers, then it has all colimits. Since we have
presented the elements & distinctions analysis of the canonical maps for products and coproducts,
and for equalizers and coequalizers, the analysis extends to all limits and colimits. Hence we have
shown that the logical characterization of canonical maps in Sets satis�es Marquis�s criteria:

1. Morphisms that are part of the data of a limit are canonical morphisms; for in-
stance, the projection morphisms that are part of the notion of a product;
2. The unique morphism from a cone to a limit determined by a universal property

is a canonical morphism: and
3. In particular, the unique isomorphism that arise between two candidates for a limit

is a canonical morphism. [9, p. 101]

However, the theme would be better illustrated by considering some more complicated limits and
colimits such as Cartesian and co-Cartesian squares, i.e., pullbacks and pushouts.

For the pushout or co-Cartesian square, the data are two maps f : Z ! X and g : Z ! Y

so we have the two parallel maps Z
f! X

iX :! X t Y and Z
g! Y

iY :! X t Y and then we can take
their coequalizer C formed by the equivalence relation � on the common codomain X t Y which is
the equivalence relation generated by x � y if there is a z 2 Z such that f (z) = x and g (z) = y.
The canonical maps X ! X t Y= � and Y ! X t Y= � are just the canonical injections into the
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disjoint union followed by the canonical map of the coequalizer construction analyzed above. As the
composition of a canonical injection with a canonical surjection, those canonical maps need not be
either injective or surjective.

Z
f! X = X

g # & #can::
Y

can:! C = X t Y= � #h
q 9! &h�

Y
h0! U

Pushout or co-Cartesian square diagram

For the universal mapping property, consider any h : X ! U and h0 : Y ! U such that hf = h0g.
Then h�1 is a partition on X and h0�1 is a partition on Y so let h�1 t h0�1 be the disjoint union
partition on X t Y . The condition that for any z 2 Z, hf (z) = h0g (z) = u for some u 2 U means
that h�1 th0�1 must make at least the identi�cations of the coequalizer (and perhaps more) so that
h�1 t h0�1 is re�ned by � as partitions on X t Y . Since h�1 t h0�1 -� so each block b in � is
contained in a block of the form h�1 (u) for some u or a block of the form h0�1 (u) for some u. Hence
that block b of � is mapped by h� to the appropriate u depending on the case which de�nes the
surjection from X t Y= � to h (X) [ h0 (Y ) � U and the inclusion de�nes the injection to complete
the de�nition of the canonical factor map h� : C = X t Y= �! U .

5.2 The pullback or Cartesian square in Sets

For the Cartesian square or pullback, the data are two maps f : X ! Z and g : Y ! Z. We then have
two parallel maps X � Y � Z (the projections followed by f or g) so we take the pullback as their
equalizer E. The canonical maps E ! X and E ! Y are the compositions of the canonical injective
map E ! X � Y followed by the canonical projections pX : X � Y ! X and pY : X � Y ! Y . As
the composition of a canonical injection with a canonical surjection, those canonical maps need not
be either injective or surjective.

U
h! X

9! &h� q
#h0 E � X � Y can:! X

#can: #f
Y = Y

g! Z
Pullback or Cartesian square diagram

For the universality property, consider any other maps h : U ! X and h0 : U ! Y such that fh =
gh0. Hence h0 (u) and h (u) are elements such that f (h (u)) = g (h0 (u)) so (h (u) ; h0 (u)) 2 E and thus
for the images, there is the inclusion h (U) � h0 (U) � E. Now h contributes the coimage partition
h�1 on U and h0 contributes the coimage partition h0�1 on U and the join h�1 _ h0�1 is re�ned by
the discrete partition on U . Hence each u 2 U is contained in a unique block h�1 (x)\h0�1 (y) of the
join so the re�nement-induced canonical map U ! h (U)�h0 (U) � E is de�ned by u 7�! (x; y) and
the inclusion-de�ned injection h (U) � h0 (U) ! E completes the de�nition of the canonical factor
map h� : U ! E.

6 Example: A more complex canonical map

Marquis [9] gives the standard examples of canonical maps that arise from limits and colimits but also
mentions a more complex example that will be analyzed. Let C be a category with �nite products,
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�nite coproducts, and a null object (an object that is both initial and terminal). Then a canonical
morphism can be constructed from the coproduct of two (or any �nite number of) objects to the
products of the objects: X t Y ! X � Y . In such a category abstractly speci�ed, the map could
be constructed from the �atomic�canonical morphisms that are already given by the arrow-theoretic
de�nitions of products, coproducts, and the null object. But the its & dits analysis shows how all
these �atomic�canonical morphisms and their �molecular�compositions are not just assumed but are
constructed in Sets or Sets-based categories according to the logical theory of canonical maps.

There is a simple Sets-based category that has �nite products, �nite products, and a null object,
namely the category Sets� of pointed sets where the objects are sets with a designated element
(or basepoint), e.g., (X;x0) with x0 2 X, and the morphisms are set functions that preserve the
basepoints. The designation of the basepoint can be given by a set map 1

x0! X in Sets which is
taken as part of the structure and is thus assumed canonical in Sets�: A basepoint preserving map
(X;x0)! (Y; y0) is a set map X ! Y in Sets so that the following diagram commutes:

1
#x0 &y0

X ! Y
.

Hence Sets� can also be seen as the slice category 1=Sets of Sets under 1.
The null object is �the�one-point set 1 and instead of assuming the canonical morphisms that

make it both initial and terminal, we need to construct them using the its & dits analysis. We have
already seen that the re�nement relation 0X - 1X induces the unique map X ! 1 that makes

1 the terminal object in Sets. And since 1
x0! X ! 1 = 1

id:! 1, it is also the terminal object in
Sets�. Moreover, the basepoint in (Y; y0) is given by the structurally canonical map 1

y0! Y and since

1
id:! 1

y0! Y = 1
y0! Y , that map 1

y0! Y is the unique map that makes 1 also the initial object in Sets�.
Hence in Sets�, there is always a canonical map formed by the composition: X ! 1! Y = X ! Y
(called the zero arrow).

To build up the its & dits analysis of the canonical morphism X t� Y ! X �� Y from the
coproduct to the product in Sets�, we begin with the construction of the coproduct X t� Y which
is just the pushout in Sets of the two canonical basepoint maps:

1
x0! X = X

y0 # & #can::
Y

can:! X t� Y = X t Y= � #h
q 9! &h�

Y
h0! U

Since the only points in X and Y that are the image of an elements in 1 are the basepoints, the
equivalence relation � only identi�es the basepoints x0 and y0. Hence X t� Y is like X t Y except
that the two basepoints are identi�ed in the quotient X t� Y = X tY= � and that block identifying
the basepoints is the basepoint of X t� Y . Then for any two set maps h : X ! U and h0 : Y ! U
that are also Sets� morphisms (i.e., preserve basepoints), there is a unique canonical factor map
h� : X t� Y ! U by the UMP for the pushout in Sets to make the triangles commute (and thus
preserve basepoints). Hence X t� Y is the coproduct in Sets�.

In a similar manner, one shows that the product X �� Y in Sets� is just the product X � Y
in Sets with hx0; y0i as the basepoint. Using the UMP of the product X �� Y in Sets�, the two
Sets� maps 1X : X ! X and the canonical X ! 1! Y , we have the unique canonical factor map
X ! X �� Y in Sets� and similarly for Y ! X �� Y in Sets�.

Then we put all the canonical maps together and use the UMP for the coproduct in Sets� to
construct the desired canonical map: X t� Y ! X �� Y in Sets�.
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X
can:�! X t� Y

can: � Y
&can: 9! #can: can: .

X �� Y
Coproduct diagram in Sets�

This example shows how in a Sets-based category like Sets�, the given canonical maps for the
structured sets (i.e., the basepoint maps 1

x0! X) are combined with the canonical maps de�ned
by the its & dits analysis in Sets to give the canonical morphisms in the Sets-based category. In
abstract category theory, as in the case of a category C which is assumed to have �nite products,
�nite coproducts, and a null object, the �atomic�canonical morphisms are all given as part of the
assumed UMPs for products, coproducts, and the null object which are then composed to de�ne
other �molecular�canonical morphisms.

7 Concluding Remarks

The "logical" in the logical theory of canonicity refers to the two dual mathematical logics: the
Boolean logic of subsets and the logic of partitions. Note that from the mathematical viewpoint,
the Boolean logic of subsets and the logic of partitions have equal intertwining roles in the whole
analysis. Normally, we might say that "subsets" and "partitions" are category-theoretic duals, but
we have tried to show a more fundamental analysis based on "elements & distinctions" or "its &
dits" that are the building blocks of subsets and partitions and that underlie the duality in Sets.

The dual interplay of elements and distinctions explains morphisms, duality, canonicity, and
universal constructions in Sets, which generalizes to other Sets-based concrete categories and which
is abstracted in abstract category theory. Our focus here is the E&D treatment of canonicity.

� Each construction starts with certain data.

� When that data is su¢ cient to de�ne inclusions in an associated subset lattice or re�nements
in an associated partition lattice, then the resulting injections and surjections (and their com-
positions) are canonical.

� That is the logical theory of canonicity

This suggests that the dual notions of elements & distinctions (its & dits) have some broader
signi�cance. One possibility is they are respectively mathematical versions of the old metaphysical
concepts of matter (or substance) and form (as in in-form-ation). The matter versus form idea [1]
can be illustrated by comparing the two lattices of subsets and partitions on a set�the two lattices
that we saw de�ned the canonical morphisms and canonical factor maps in Sets-based categories.

For U = fa; b; cg, start at the bottom and move towards the top of each lattice.

Figure 1: Moving up the subset and partition lattices.
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At the bottom of the Boolean subset lattice is the empty set ; which represents no substance
(no �its�). As one moves up the lattice, new elements of substance, new "its", are created that are
always fully formed until �nally one reaches the top, the universe U . Thus new substance is created
in moving up the lattice but each element is fully formed and thus distinguished from the other
elements.

At the bottom of the partition lattice is the indiscrete partition or "blob" 0U= fUg (where the
universe set U makes one block) which represents all the substance or matter but with no distinctions
to in-form the substance (no �dits�). As one moves up the lattice, no new substance is created but
distinctions are created that in-form the indistinct elements as they become more and more distinct.
Finally one reaches the top, the discrete partition 1U , where all the elements of U have been fully
formed. A partition combines inde�niteness (within blocks) and de�niteness (between blocks). At
the top of the partition lattice, the discrete partition 1U = ffug : fug � Ug is the result making all
the distinctions to eliminate any inde�niteness. Thus one ends up at essentially the "same place"
(universe U of fully formed entities) either way, but by two totally di¤erent but dual �creation stories�:

� creating elements (as in creating fully-formed matter out of nothing) versus

� creating distinctions (as in starting with a totally undi¤erentiated matter and then, in a �big
bang,�start making distinctions, e.g., breaking symmetries, to give form to the matter).

Moreover, we have seen that:

� the quantitative increase in substance (normalized number of elements) moving up in the
subset lattice is measured by logical or Laplacian probability, and

� the quantitative increase in form (normalized number of distinctions) moving up in the parti-
tion lattice is measured by logical information or logical entropy ([2]; [5]).
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