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X data set: Z metric space, X € D(Z) = finite subsets of Z.

e Ps(X) = poset of subsets o C X such that d(x, y) < s for all
X,y €0.s€[0,00).

Ps(X) is the poset of simplices of Vietoris-Rips complex V;(X).

The nerve BP,(X) is barycentric subdivision of V,(X) (same
homotopy type).

We have poset inclusions
o Ps(X) C Pe(X), s<t,
Po(X) = X, and P:(X) = P(X) (all subsets of X) for t suff large.

e k> 0: P, (X) C Ps(X) subposet of simplices o such that each
element x € ¢ has at least k distinct neighbours y such that
d(x,y) <s.

Ps k(X) is the poset of simplices of the degree Rips complex

Ls k(X). BPs «(X) is the barycentric subdivision of L ,(X)



The nerve construction

The nerve BC of a category C is a simplicial set with n-simplices
BC,, given by the set of strings of arrows

ag—ay — - — ap
of length n in C, equivalently functors n — C, where
n={0,1,...,n},

with the obvious poset structure.

Composition with the functors 6 : m — n defines the simplicial
structure of BC.

Examples: 1) Bn = A", the standard n-simplex in simplicial sets.
2) BG = K(G,1) for a group G, classifies principal G-bundles.

BC is also called the classifying space of C.
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Stability

Theorem 1 (Rips stability).
Suppose X C Y in D(Z) such that dy(X,Y) < r. Thereis a
homotopy commutative diagram (homotopy interleaving)

Ps(X) - s+2r(X)
WL i
Ps(Y) =z s+2r(Y)

Corollary 2 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

Hk(Vs(X)) e Hk(vs+2r(X))
oL i
H(Vs(Y)) = Hi(Vsi2:(Y))

There is a corresponding statement for my (clusters).
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Sketch proof

y € Y: thereis 6(y) € X st. d(y,0(y)) < r (from dy(X,Y) < r).
x € X: 0(x) = x.

0(y1) e 0(y2)

RS 7

n——»y

o={y1,...,yk} in Ps(Y), then

oUb(o)={yv1, - ¥k, 0(y1),---,0(¥k)} € Psi2,(Y)

and there are homotopies (natural transformations)
o C oUbl(o) 2 6(o).

between poset morphisms Ps(Y) — Psi2.(Y).

Rick Jardine Posets, metric spaces, and topological data analysis



A natural transformation h between functors f,g: C — D is a
diagram of functors

C f(a) —>g(a)
Sy ] e
i f(b) —— g(b)

where 1 = {0 <1}, i(a) = (a,€).
B(C x1)= BC x Bl = BC x A!

BC
¢/ f
io
1 h
BC x A* —— BD
i)}
g
BC



Stability: degree Rips

D(Z) = finite subsets of a metric space Z.

Suppose X C Y in D(Z) such that dH(XCl,‘,.jl, Yo’,(,-;rl) < r. Thereis
a homotopy commutative diagram

Ps,k(X) - s+2r,k(X)
AR 1
'Ds,k(y) = s+2r,k(y)

ij,.:l is the set of subsets o C X having k 4+ 1 elements.

Xé(’;i-l C Zk+1 .
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Equivalence up to shift

NB: V. (X) := BP.(X) for a while.
Suppose that X C Y in D(Z) and we have a homotopy interleaving
Vs(X) % Veia/(X) o are shift maps.

iy T i
Vs(y)?' s+2r(Y)

1) i : moViu(X) — moVi(Y) is a 2r-monomorphism: if
i([x]) = i(ly]) in mo Vs(Y) then o([x]) = o([y]) in 7o Verar(X)

2) i :moVi(X) — moVi(Y) is a 2r-epimorphism: given
[y} € moVs(Y), a(ly]) = i([x]) for some [x] € 7o V2, (X).

3) All i : mp(Vi(X),x) = ma(Vi(Y), i(x)) are 2r-isomorphisms.

The map 7 : Vi(X) — V.(Y) is a 2r-equivalence of systems.
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A system of spaces is a functor X : [0,00) — sSet, aka. a
diagram of simplicial sets with index category [0, c0).

A map of systems X — Y is a natural transformation of functors
defined on [0, c0).

sSetl%>) is the category of systems and natural transformations.

Examples

1) The functor Vi (X), s — Vs(X) = BPs(X) is a system of
spaces, for a data set X C Z.

2) If X C Y in D(Z), the induced maps Ps(X) — Ps(Y),
Vs(X) — Vs(Y) define maps of systems

P.(X) — P.(Y) (posets) and Vi (X) — Vi(Y) (spaces).
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Homotopy types

Homotopy theories of systems: oldest is the projective structure
(Bousfield-Kan, 1972):

A map f : X — Y is a weak equivalence (resp. fibration) if each
map Xs — Y5 is a weak equiv. (resp. Kan fibration) of simplicial
sets.

A map A — B is a projective cofibration if it has the left lifting
property with respect all maps which are trivial fibrations.

Suppose that X C Y in D(Z). Then Vi (X) — Vi(Y) is a
projective cofibration.

The map Vi (X) — Vi(Y) is also a sectionwise cofibration, i.e. all
maps Vs(X) — Vs(Y) are monomorphisms.

Fibrations and weak equivalences for the projective structure are
defined sectionwise.
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Controlled equivalences

Suppose that f : X — Y is a map of systems. Say that f is an
r-equivalence if
1) the map f : mo(X) — mo(Y) is an r-isomorphism of systems
of sets
2) the maps f : m(Xs, x) = m(Ys, f(x)) are r-isomorphisms of
systems of groups, for all s >0, x € Xg, k > 1.

Observation: Suppose given a diagram of systems

f‘
X1 +Y
sect 2¢ ¢/z sect

X2?2Y2

Then fi is an r-equivalence iff f> is an r-equivalence.
Examples: Stability results. A sectionwise equivalence is a
0-equivalence.

A controlled equivalence is a map which is an r-equivalence for
some r > 0.
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Triangle axiom

Suppose given a commutative triangle

X
g
Z

Ly
NV

If one of the maps is an r-equivalence, a second is an
s-equivalence, then the third map is a (r + s)-equivalence.

Set theory.
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Cofibrations

Suppose that i : A — B is a sectionwise cofibration and an
r-equivalence, and suppose given a pushout

A—C
i i

B—D

Then i, is a sectionwise cofibration and a 2r-equivalence.

Sketch (Whitehead theorem): There is a 2r-interleaving

As — FAs 12/

V7

Bs — FBs+2r

for a sectionwise fibrant model of i. The class of cofibrations
admitting 2r-interleavings is closed under pushout.
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Persistent homotopy theory

(A’): Suppose given a commutative diagram

If one of the maps is an r-equivalence, another is an s-equivalence,
then the third is an (r + s)-equivalence.

(B): The composite of two cofibrations is a cofibration. Any
isomorphism is a cofibration.

(C’): Cofibrations are closed under pushout. Given a pushout

A—C

o Vi

B—-=D
with 7/ a cofibration and r-equivalence, then i, is a cofibration and
a 2r-equivalence.

Rick Jardine Posets, metric spaces, and topological data analysis



Persistent homotopy theory Il

(D): For any object A there is at least one cylinder object A® Al
(E): All objects are cofibrant.

This is an adjusted list of axioms for a category of cofibations
structure — works for projective or sectionwise cofibrations.

Lemma 7 (left properness).

Suppose given a pushout

AL

1

O<—0

|
B~

Us

where i is a cofibration and u is an r-equivalence. Then uy is a
2r-equivalence.

There is also a patching lemma.
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ep-metric spaces (following Spivak)

An extended pseudo-metric space (ep-metric space) (X, D) is a
set X and a function D : X x X — [0, o0] such that

1) D(x,x) =0,
2) D(x,y) = D(y;x),
3) D(x,z) < D(x,y)+ D(y, z).

e Can have distinct x, y such that D(x,y) =0 (“pseudo”).
e Can have u, v such that D(u,v) = oo (“extended”).

Every metric space (Y, d) is an ep-metric space via composition
Y x Y % [0,00) C [0, 00].

A morphism £ : (X, dx) — (Y, dy) of ep-metric spaces is a
function f : X — Y such that

dy(f(x),f(y)) < dx(x,y) (non-expanding).

ep — Met is the category of ep-metric spaces and their morphisms.

Rick Jardine Posets, metric spaces, and topological data analysis



Quotient construction

(X, d) an ep-metric space and p : X — Y a surjective function.

For x,y € Y set
k
D = inf isYi)s
(x,y) = ing ZO d(xi, i)

“Polygonal path” P : pairs (x;, y;) in X with x = p(x0), y = p(x«),
p(yi) = p(xis1).

For x,y € X, P: x,y is path from p(x) to p(y), so
D(p(x), p(y)) < d(x, y).

Polygonal paths concatenate, so D(x,z) < D(x,y) + D(y, z).
D(x,x) =0 and D(x,y) = D(y, x).
Quotient map p : (X, d) — (Y, D) satisfies universal property.
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ep — Met is cocomplete

1) Suppose (Xi, d;), i € | is a set of ep-metric spaces. There is an
ep-metric D on | |; Xi, with

df(X7y) if x,y € X,
D(x,y) = . o
00 if x, y are in different summands.
LI; (Xi,d;) is a coproduct in ep — Met.
2) Suppose given morphisms f, g : (X,dx) — (Y, dy) in
ep — Met. Form the set theoretic coequalizer

f
X—=Y-2c
g

Then p is a surjective function, and we give C the quotient
ep-metric D.

(X,dx) = (Y dy) == (C, D)

is a coequalizer in ep — Met.
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Excision

Suppose given subspaces X, Y C Z of a finite metric space (Z, d)
such that Z=XUY.

X Uem Y is pushout in ep — Met.
The map X Ugp, Y — Z is the identity on the underlying sets.
The metric D on X Ugp Y is defined by

D(x.y) = inf {37 dlxr x40},
indexed over sequences P : x = xp, x1, ..., X, = y such that each
pair (xj, xj+1) is either in X orin Y.
Fact: The induced map
mo(Vs(X,d) U V5(Y,d)) = moVs(X Ugp Y, D)

is a bijection.

Question: What about homotopy/homology groups?



Simplex categories

sSetl%! is the diagram category of functors [0, 00] — sSet.

Suppose that K is a simplicial set and s € [0, o¢].

K ift>s,
LKe={ 5=
0 ift<s.

Fact: hom(LsK, X) = hom(K, Xs) for X : [0, 00] — sSet

A simplex of X is a morphism o : LsA" — X (an n-simplex of
Xs). A morphism of simplices is a commutative diagram

m % n m 0 n
LA LA AT = A

N KARA
X

Xt%Xs

The simplex category is denoted by A/X.
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Realization

Write Ul for the metric space structure on n = {0,1,...,n} with
d(i,j) =s.

If :m — nisa poset map and s < t, then # induces an ep-metric
space map 6 : U" — U_, since

The assignment which takes a simplex o : LA™ — X to the space
U! defines a functor A/X — ep — Met. Then

X
2
e
i
-

3

is the realization of X in ep — Met.

If Y € ep — Met then S(Y) is the diagram with
5(Y)s,n =hom(U¢,Y).

Singular functor S : ep — Met — sSetl®>! is right adjoint to Re.



Realization, Il

Suppose that X : [0,00] — sSet is a diagram. Then

Ii?m Xs = Xoo

because oo is terminal in [0, co].

Lemma 8.
Given X : [0,00] — sSet, then Re(X) = (X, D), where

k
D(x,y) =inf {51}
i=0

where P is a polygonal path consisting of 1-simplices x; — y; in
Xs;, with xo — x, x — y, and y;, xjy1 have the same image in X.
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(X, d) a totally ordered finite ep-metric space.

The Vietoris-Rips complex Vs(X) is a simplicial set with n-simplices
X0 < xp << Xy

with d(x;, x;) < s for all i,j. BPs(X) is the barycentric subdivision
of Vs(X). Here, s < 0.

X a totally ordered finite ep-metric space. Then Re(V,(X)) = X.

D(x,y) =infp ) d(xj, xi+1), indexed over sequences

X = X0,X1, ---,Xk = Y. Then d(x,y) < D(x,y) by the triangle
identity.
D(x,y) < d(x,y) because (x, y) is a path in some X;. OJ
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Canonical map

(X, d) a totally ordered finite ep-metric space.
The canonical map 7 : V(X) — S(Re(V(X))) has the form
n: V(X) = S5(X),

where 7 takes the simplex xg < x3 < -+ < x, to the sequence
(x0, X1, - ..,xk) (forgets the ordering — the sequence is a “bag of
words”).

Theorem 10.

(X, d) a totally ordered finite ep-metric space. Then each map
n: Vs(X) = S(X)s

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that
BNV(X) — BNS(X)s and 7 : sd S(X)s — BNS(X)s are weak
equivalences.
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UMAP (Healy-Mclnnes)

(X, d) is a finite ep-metric space.
Choose a neighbourhood set N, for each x € X .
Set ry = maxyepn, d(x,y).

e.g. Ny is set of k nearest neighbours if X is totally ordered, for
some k.

Set (Ux, dx) = Vyen, ({x,y},d) in ep — Met.
Then dy(y1,y2) = d(x,y1) + d(x, y2) for y1,y» € Ni.

Extend to an ep-metric dy on X by setting dy(y, z) = oo if either
y or z is outside of U,.

We have inclusions X C V(X,dx), x € X. Form iterated pushout
V(X, N) = Vx V(X,dy) ~ Vx S(X,dy).

The metrics dy can be rescaled, but the diagram V/(X, N) is “the”

UMAP complex.

UMAP algorithm: apply TDA machinery (e.g. mo) to V(X, N).



Comparisons

(X, d) is a finite totally ordered ep-metric space, with
neighbourhoods N = {N,, x € X}.

¢: V(X,N)=vx V(X,ds) = V(X) canonical map.
(x,y) in X is a neighbourhood pair if y € N, or x € N,,.

Graph (X, N) C V(X) with vertices X and edges all nbhd pairs.

Lemma 11.

moV(X, N)s > mol (X, N)s
o
o Vs (X)

If all 1-simplices of V5(X) are nbhd pairs, then iy is an iso.

Example: N, = k-nearest neighbours, r, = max,cn, d(x,y),
s < ry for all x.
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Comparisons |l

Fact: V (X, N) is a big wedge of circles.

V(X,dx) = AX =AN for N+1 = |X[, so V(X,N)o = Vpn A"
(N + 1 summands).

Define N > AN =X;, 0<i<k, Y=Vn X (iterated pushout).
Each X; is contractible, so Y /Xy ~ Y, and

Y /Xo = (Xt/N) V-V (Xi/N) = (AM/N) V- v (A/N)

and each
AV/N ~¥N~3(S%V---vS% (N summands, N pointed by 0)
~Sty...v St

Consequence: V(X, N),, ~ VI, ST (N =|X| —1).
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