
Posets, metric spaces, and topological data
analysis

Rick Jardine

University of Western Ontario

September 16, 2020

Rick Jardine Posets, metric spaces, and topological data analysis



Basic setup

X data set: Z metric space, X ∈ D(Z ) = finite subsets of Z .

• Ps(X ) = poset of subsets σ ⊂ X such that d(x , y) ≤ s for all
x , y ∈ σ. s ∈ [0,∞).

Ps(X ) is the poset of simplices of Vietoris-Rips complex Vs(X ).

The nerve BPs(X ) is barycentric subdivision of Vs(X ) (same
homotopy type).

We have poset inclusions

σ : Ps(X ) ⊂ Pt(X ), s ≤ t,

P0(X ) = X , and Pt(X ) = P(X ) (all subsets of X ) for t suff large.

• k ≥ 0: Ps,k(X ) ⊂ Ps(X ) subposet of simplices σ such that each
element x ∈ σ has at least k distinct neighbours y such that
d(x , y) ≤ s.

Ps,k(X ) is the poset of simplices of the degree Rips complex
Ls,k(X ). BPs,k(X ) is the barycentric subdivision of Ls,k(X )
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The nerve construction

The nerve BC of a category C is a simplicial set with n-simplices
BCn given by the set of strings of arrows

a0 → a1 → · · · → an

of length n in C , equivalently functors n→ C , where

n = {0, 1, . . . , n},

with the obvious poset structure.

Composition with the functors θ : m→ n defines the simplicial
structure of BC .

Examples: 1) Bn = ∆n, the standard n-simplex in simplicial sets.

2) BG = K (G , 1) for a group G , classifies principal G -bundles.

BC is also called the classifying space of C .
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Stability

Theorem 1 (Rips stability).

Suppose X ⊂ Y in D(Z ) such that dH(X ,Y ) < r . There is a
homotopy commutative diagram (homotopy interleaving)

Ps(X )
σ //

i ��

Ps+2r (X )
i��

Ps(Y ) σ
//

θ
77

Ps+2r (Y )

Corollary 2 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

Hk(Vs(X ))
σ //

i ��

Hk(Vs+2r (X ))
i��

Hk(Vs(Y )) σ
//

θ
55

Hk(Vs+2r (Y ))

There is a corresponding statement for π0 (clusters).
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Sketch proof

y ∈ Y : there is θ(y) ∈ X st. d(y , θ(y)) < r (from dH(X ,Y ) < r).
x ∈ X : θ(x) = x .

θ(y1)
s+2r

θ(y2)

y1

r

s y2

r

σ = {y1, . . . , yk} in Ps(Y ), then

σ ∪ θ(σ) = {y1, . . . , yk , θ(y1), . . . , θ(yk)} ∈ Ps+2r (Y )

and there are homotopies (natural transformations)

σ ⊆ σ ∪ θ(σ) ⊇ θ(σ).

between poset morphisms Ps(Y )→ Ps+2r (Y ).
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Homotopies

A natural transformation h between functors f , g : C → D is a
diagram of functors

C
i0 ��

f

&&
C × 1

h // D

C
i1
OO

g

88

f (a)
h //

f (α)
��

g(a)

g(α)
��

f (b)
h
// g(b)

where 1 = {0 ≤ 1}, iε(a) = (a, ε).

B(C × 1) ∼= BC × B1 = BC ×∆1

BC
i0 ��

f

((
BC ×∆1 h // BD

BC

i1

OO
g

66
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Stability: degree Rips

D(Z ) = finite subsets of a metric space Z .

Theorem 3.

Suppose X ⊂ Y in D(Z ) such that dH(X k+1
dis ,Y k+1

dis ) < r . There is
a homotopy commutative diagram

Ps,k(X )
σ //

i ��

Ps+2r ,k(X )
i��

Ps,k(Y ) σ
//

θ
66

Ps+2r ,k(Y )

X k+1
dis is the set of subsets σ ⊂ X having k + 1 elements.

X k+1
dis ⊂ Z k+1.
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Equivalence up to shift

NB: V∗(X ) := BP∗(X ) for a while.

Suppose that X ⊂ Y in D(Z ) and we have a homotopy interleaving

Vs(X )
σ //

i ��

Vs+2r (X )
i��

Vs(Y ) σ
//

θ
77

Vs+2r (Y )

σ are shift maps.

1) i : π0V∗(X )→ π0V∗(Y ) is a 2r-monomorphism: if
i([x ]) = i([y ]) in π0Vs(Y ) then σ([x ]) = σ([y ]) in π0Vs+2r (X )

2) i : π0V∗(X )→ π0V∗(Y ) is a 2r-epimorphism: given
[y ] ∈ π0Vs(Y ), σ([y ]) = i([x ]) for some [x ] ∈ π0Vs+2r (X ).

3) All i : πn(V∗(X ), x)→ πn(V∗(Y ), i(x)) are 2r-isomorphisms.

The map i : V∗(X )→ V∗(Y ) is a 2r-equivalence of systems.
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Systems

A system of spaces is a functor X : [0,∞)→ sSet, aka. a
diagram of simplicial sets with index category [0,∞).

A map of systems X → Y is a natural transformation of functors
defined on [0,∞).

sSet[0,∞) is the category of systems and natural transformations.

Examples

1) The functor V∗(X ), s 7→ Vs(X ) = BPs(X ) is a system of
spaces, for a data set X ⊂ Z .

2) If X ⊂ Y in D(Z ), the induced maps Ps(X )→ Ps(Y ),
Vs(X )→ Vs(Y ) define maps of systems

P∗(X )→ P∗(Y ) (posets) and V∗(X )→ V∗(Y ) (spaces).
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Homotopy types

Homotopy theories of systems: oldest is the projective structure
(Bousfield-Kan, 1972):

A map f : X → Y is a weak equivalence (resp. fibration) if each
map Xs → Ys is a weak equiv. (resp. Kan fibration) of simplicial
sets.

A map A→ B is a projective cofibration if it has the left lifting
property with respect all maps which are trivial fibrations.

Lemma 4.

Suppose that X ⊂ Y in D(Z ). Then V∗(X )→ V∗(Y ) is a
projective cofibration.

The map V∗(X )→ V∗(Y ) is also a sectionwise cofibration, i.e. all
maps Vs(X )→ Vs(Y ) are monomorphisms.

Fibrations and weak equivalences for the projective structure are
defined sectionwise.
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Controlled equivalences

Suppose that f : X → Y is a map of systems. Say that f is an
r-equivalence if

1) the map f : π0(X )→ π0(Y ) is an r -isomorphism of systems
of sets

2) the maps f : πk(Xs , x)→ πk(Ys , f (x)) are r -isomorphisms of
systems of groups, for all s ≥ 0, x ∈ Xs , k ≥ 1.

Observation: Suppose given a diagram of systems

X1
f1 //

sect ' ��

Y1

' sect��
X2

f2
// Y2

Then f1 is an r -equivalence iff f2 is an r -equivalence.

Examples: Stability results. A sectionwise equivalence is a
0-equivalence.

A controlled equivalence is a map which is an r -equivalence for
some r ≥ 0.

Rick Jardine Posets, metric spaces, and topological data analysis



Triangle axiom

Lemma 5.

Suppose given a commutative triangle

X
f //

h   

Y
g��

Z

If one of the maps is an r-equivalence, a second is an
s-equivalence, then the third map is a (r + s)-equivalence.

Proof.

Set theory.
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Cofibrations

Theorem 6.

Suppose that i : A→ B is a sectionwise cofibration and an
r-equivalence, and suppose given a pushout

A //

i ��

C
i∗��

B // D

Then i∗ is a sectionwise cofibration and a 2r -equivalence.

Sketch (Whitehead theorem): There is a 2r -interleaving

As
//

��

FAs+2r

��
Bs

//

::

FBs+2r

for a sectionwise fibrant model of i . The class of cofibrations
admitting 2r -interleavings is closed under pushout.
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Persistent homotopy theory

(A’): Suppose given a commutative diagram

A //

��

C

B

??

If one of the maps is an r -equivalence, another is an s-equivalence,
then the third is an (r + s)-equivalence.

(B): The composite of two cofibrations is a cofibration. Any
isomorphism is a cofibration.

(C’): Cofibrations are closed under pushout. Given a pushout

A //

i ��

C
i∗��

B // D

with i a cofibration and r -equivalence, then i∗ is a cofibration and
a 2r -equivalence.
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Persistent homotopy theory II

(D): For any object A there is at least one cylinder object A⊗∆1.

(E): All objects are cofibrant.

This is an adjusted list of axioms for a category of cofibations
structure — works for projective or sectionwise cofibrations.

Lemma 7 (left properness).

Suppose given a pushout

A
u //

i ��

C

��
B u∗

// D

where i is a cofibration and u is an r-equivalence. Then u∗ is a
2r -equivalence.

There is also a patching lemma.
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ep-metric spaces (following Spivak)

An extended pseudo-metric space (ep-metric space) (X ,D) is a
set X and a function D : X × X → [0,∞] such that

1) D(x , x) = 0,

2) D(x , y) = D(y , x),

3) D(x , z) ≤ D(x , y) + D(y , z).

• Can have distinct x , y such that D(x , y) = 0 (“pseudo”).
• Can have u, v such that D(u, v) =∞ (“extended”).

Every metric space (Y , d) is an ep-metric space via composition

Y × Y
d−→ [0,∞) ⊂ [0,∞].

A morphism f : (X , dX )→ (Y , dY ) of ep-metric spaces is a
function f : X → Y such that

dY (f (x), f (y)) ≤ dX (x , y) (non-expanding).

ep −Met is the category of ep-metric spaces and their morphisms.
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Quotient construction

(X , d) an ep-metric space and p : X → Y a surjective function.

For x , y ∈ Y set

D(x , y) = inf
P

k∑
i=0

d(xi , yi ),

“Polygonal path” P : pairs (xi , yi ) in X with x = p(x0), y = p(xk),
p(yi ) = p(xi+1).

For x , y ∈ X , P : x , y is path from p(x) to p(y), so
D(p(x), p(y)) ≤ d(x , y).

Polygonal paths concatenate, so D(x , z) ≤ D(x , y) + D(y , z).

D(x , x) = 0 and D(x , y) = D(y , x).

Quotient map p : (X , d)→ (Y ,D) satisfies universal property.
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ep −Met is cocomplete

1) Suppose (Xi , di ), i ∈ I is a set of ep-metric spaces. There is an
ep-metric D on

⊔
i Xi , with

D(x , y) =

{
di (x , y) if x , y ∈ Xi ,

∞ if x , y are in different summands.⊔
i (Xi , di ) is a coproduct in ep −Met.

2) Suppose given morphisms f , g : (X , dX )→ (Y , dY ) in
ep −Met. Form the set theoretic coequalizer

X
f //
g
// Y

p // C ,

Then p is a surjective function, and we give C the quotient
ep-metric D.

(X , dX )
f //
g
// (Y , dY )

p // (C ,D)

is a coequalizer in ep −Met.
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Excision

Suppose given subspaces X ,Y ⊂ Z of a finite metric space (Z , d)
such that Z = X ∪ Y .

X ∪em Y is pushout in ep −Met.

The map X ∪ep Y → Z is the identity on the underlying sets.

The metric D on X ∪ep Y is defined by

D(x , y) = inf
P
{
∑
i

d(xi , xi+1)},

indexed over sequences P : x = x0, x1, . . . , xk = y such that each
pair (xi , xi+1) is either in X or in Y .

Fact: The induced map

π0(Vs(X , d) ∪ Vs(Y , d))→ π0Vs(X ∪ep Y ,D)

is a bijection.

Question: What about homotopy/homology groups?
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Simplex categories

sSet[0,∞] is the diagram category of functors [0,∞]→ sSet.

Suppose that K is a simplicial set and s ∈ [0,∞].

LsKt =

{
K if t ≥ s,

∅ if t < s.

Fact: hom(LsK ,X ) = hom(K ,Xs) for X : [0,∞]→ sSet

A simplex of X is a morphism σ : Ls∆n → X (an n-simplex of
Xs). A morphism of simplices is a commutative diagram

Lt∆
m θ //

τ ##

Ls∆n

σ{{
X

∆m θ //

τ ��

∆n

σ��
Xt Xs
oo

The simplex category is denoted by ∆/X .
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Realization

Write Un
s for the metric space structure on n = {0, 1, . . . , n} with

d(i , j) = s.

If θ : m→ n is a poset map and s ≤ t, then θ induces an ep-metric
space map θ : Um

t → Un
s , since

d(θ(i), θ(j)) ≤ s ≤ t = d(i , j), if i 6= j .

The assignment which takes a simplex σ : Ls∆n → X to the space
Un
s defines a functor ∆/X → ep −Met. Then

Re(X ) := lim−→
Ls∆n→X

Un
s

is the realization of X in ep −Met.

If Y ∈ ep −Met then S(Y ) is the diagram with

S(Y )s,n = hom(Un
s ,Y ).

Singular functor S : ep −Met→ sSet[0,∞] is right adjoint to Re.
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Realization, II

Suppose that X : [0,∞]→ sSet is a diagram. Then

lim−→
s

Xs = X∞

because ∞ is terminal in [0,∞].

Lemma 8.

Given X : [0,∞]→ sSet, then Re(X ) ∼= (X∞,D), where

D(x , y) = inf
P
{

k∑
i=0

si}

where P is a polygonal path consisting of 1-simplices xi → yi in
Xsi , with x0 7→ x, xk 7→ y, and yi , xi+1 have the same image in X∞.
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Examples

(X , d) a totally ordered finite ep-metric space.

The Vietoris-Rips complex Vs(X ) is a simplicial set with n-simplices

x0 ≤ x1 ≤ · · · ≤ xn

with d(xi , xj) ≤ s for all i , j . BPs(X ) is the barycentric subdivision
of Vs(X ). Here, s ≤ ∞.

Lemma 9.

X a totally ordered finite ep-metric space. Then Re(V∗(X )) ∼= X .

Proof.

D(x , y) = infP
∑

d(xi , xi+1), indexed over sequences
x = x0, x1, . . . , xk = y . Then d(x , y) ≤ D(x , y) by the triangle
identity.

D(x , y) ≤ d(x , y) because (x , y) is a path in some Xs .
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Canonical map

(X , d) a totally ordered finite ep-metric space.

The canonical map η : V (X )→ S(Re(V (X ))) has the form

η : V (X )→ S(X ),

where η takes the simplex x0 ≤ x1 ≤ · · · ≤ xn to the sequence
(x0, x1, . . . , xk) (forgets the ordering — the sequence is a “bag of
words”).

Theorem 10.

(X , d) a totally ordered finite ep-metric space. Then each map

η : Vs(X )→ S(X )s

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that
BNVs(X )→ BNS(X )s and π : sd S(X )s → BNS(X )s are weak
equivalences.
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UMAP (Healy-McInnes)

(X , d) is a finite ep-metric space.

Choose a neighbourhood set Nx for each x ∈ X .

Set rx = maxy∈Nx d(x , y).

e.g. Nx is set of k nearest neighbours if X is totally ordered, for
some k .

Set (Ux , dx) = ∨y∈Nx ({x , y}, d) in ep −Met.

Then dx(y1, y2) = d(x , y1) + d(x , y2) for y1, y2 ∈ Nx .

Extend to an ep-metric dx on X by setting dx(y , z) =∞ if either
y or z is outside of Ux .

We have inclusions X ⊂ V (X , dx), x ∈ X . Form iterated pushout

V (X ,N) = ∨X V (X , dx) ' ∨X S(X , dx).

The metrics dx can be rescaled, but the diagram V (X ,N) is “the”
UMAP complex.

UMAP algorithm: apply TDA machinery (e.g. π0) to V (X ,N).
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Comparisons

(X , d) is a finite totally ordered ep-metric space, with
neighbourhoods N = {Nx , x ∈ X}.

φ : V (X ,N) = ∨X V (X , dx)→ V (X ) canonical map.

(x , y) in X is a neighbourhood pair if y ∈ Nx or x ∈ Ny .

Graph Γ(X ,N)
i
⊂ V (X ) with vertices X and edges all nbhd pairs.

Lemma 11.

π0V (X ,N)s
∼= //

φ∗
))

π0Γ(X ,N)s
i∗��

π0Vs(X )

If all 1-simplices of Vs(X ) are nbhd pairs, then i∗ is an iso.

Example: Nx = k-nearest neighbours, rx = maxy∈Nx d(x , y),
s < rx for all x .
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Comparisons II

Fact: V (X ,N)∞ is a big wedge of circles.

V (X , dX ) = ∆X = ∆N for N + 1 = |X |, so V (X ,N)∞ = ∨N ∆n

(N + 1 summands).

Define N→ ∆N = Xi , 0 ≤ i ≤ k , Y = ∨N Xi (iterated pushout).

Each Xi is contractible, so Y /X0 ' Y , and

Y /X0 = (X1/N) ∨ · · · ∨ (Xk/N) = (∆N/N) ∨ · · · ∨ (∆N/N)

and each

∆N/N ' ΣN ' Σ(S0 ∨ · · · ∨ S0) (N summands, N pointed by 0)

' S1 ∨ · · · ∨ S1.

Consequence: V (X ,N)∞ ' ∨N
2

i=1 S1 (N = |X | − 1).
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