Posets, metric spaces, and topological data analysis

Rick Jardine

University of Western Ontario

September 16, 2020

Basic setup

X data set: Z metric space, $X \in D(Z) =$ finite subsets of Z.

• $P_s(X) = \text{poset of subsets } \sigma \subset X \text{ such that } d(x, y) \le s \text{ for all } x, y \in \sigma. \ s \in [0, \infty).$

 $P_s(X)$ is the poset of simplices of **Vietoris-Rips complex** $V_s(X)$. The **nerve** $BP_s(X)$ is **barycentric subdivision** of $V_s(X)$ (same homotopy type).

We have poset inclusions

$$\sigma: P_s(X) \subset P_t(X), \ s \leq t,$$

 $P_0(X) = X$, and $P_t(X) = \mathcal{P}(X)$ (all subsets of X) for t suff large.

• $k \ge 0$: $P_{s,k}(X) \subset P_s(X)$ subposet of simplices σ such that each element $x \in \sigma$ has at least k distinct neighbours y such that $d(x, y) \le s$.

 $P_{s,k}(X)$ is the poset of simplices of the **degree Rips complex** $L_{s,k}(X)$. $BP_{s,k}(X)$ is the **barycentric subdivision** of $L_{s,k}(X)$

The nerve construction

The **nerve** BC of a category C is a simplicial set with *n*-simplices BC_n given by the set of strings of arrows

 $a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n$

of length *n* in *C*, equivalently functors $n \rightarrow C$, where

 $\mathsf{n} = \{0, 1, \ldots, n\},\$

with the obvious poset structure.

Composition with the functors $\theta : m \to n$ defines the simplicial structure of *BC*.

Examples: 1) $Bn = \Delta^n$, the standard *n*-simplex in simplicial sets. 2) BG = K(G, 1) for a group *G*, classifies principal *G*-bundles. *BC* is also called the **classifying space** of *C*.

Theorem 1 (Rips stability).

Suppose $X \subset Y$ in D(Z) such that $d_H(X, Y) < r$. There is a homotopy commutative diagram (homotopy interleaving)

Corollary 2 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

$$\begin{array}{c} H_k(V_s(X)) \xrightarrow{\sigma} H_k(V_{s+2r}(X)) \\ \downarrow & \downarrow \\ H_k(V_s(Y)) \xrightarrow{\sigma} H_k(V_{s+2r}(Y)) \end{array}$$

There is a corresponding statement for π_0 (clusters).

Sketch proof

 $y \in Y$: there is $\theta(y) \in X$ st. $d(y, \theta(y)) < r$ (from $d_H(X, Y) < r$). $x \in X$: $\theta(x) = x$.

 $\sigma = \{y_1, \dots, y_k\} \text{ in } P_s(Y), \text{ then}$ $\sigma \cup \theta(\sigma) = \{y_1, \dots, y_k, \theta(y_1), \dots, \theta(y_k)\} \in P_{s+2r}(Y)$

and there are homotopies (natural transformations)

$$\sigma \subseteq \sigma \cup \theta(\sigma) \supseteq \theta(\sigma).$$

between poset morphisms $P_s(Y) \rightarrow P_{s+2r}(Y)$.

Homotopies

A natural transformation h between functors $f, g: C \rightarrow D$ is a diagram of functors

where $1 = \{0 \le 1\}$, $i_{\epsilon}(a) = (a, \epsilon)$. $B(C \times 1) \cong BC \times B1 = BC \times \Delta^1$

D(Z) = finite subsets of a metric space Z.

Theorem 3.

Suppose $X \subset Y$ in D(Z) such that $d_H(X_{dis}^{k+1}, Y_{dis}^{k+1}) < r$. There is a homotopy commutative diagram

 X_{dis}^{k+1} is the set of subsets $\sigma \subset X$ having k+1 elements. $X_{dis}^{k+1} \subset Z^{k+1}$. **NB**: $V_*(X) := BP_*(X)$ for a while.

Suppose that $X \subset Y$ in D(Z) and we have a homotopy interleaving

$$\begin{array}{ccc} V_s(X) \xrightarrow{\sigma} V_{s+2r}(X) & \sigma \text{ are shift maps.} \\ i & & \downarrow & & \downarrow i \\ V_s(Y) \xrightarrow{\sigma} V_{s+2r}(Y) \end{array}$$

1) $i: \pi_0 V_*(X) \to \pi_0 V_*(Y)$ is a 2*r*-monomorphism: if i([x]) = i([y]) in $\pi_0 V_s(Y)$ then $\sigma([x]) = \sigma([y])$ in $\pi_0 V_{s+2r}(X)$ 2) $i: \pi_0 V_*(X) \to \pi_0 V_*(Y)$ is a 2*r*-epimorphism: given $[y] \in \pi_0 V_s(Y), \sigma([y]) = i([x])$ for some $[x] \in \pi_0 V_{s+2r}(X)$. 3) All $i: \pi_n(V_*(X), x) \to \pi_n(V_*(Y), i(x))$ are 2*r*-isomorphisms.

The map $i: V_*(X) \to V_*(Y)$ is a 2*r*-equivalence of systems.

A system of spaces is a functor $X : [0, \infty) \to s$ Set, aka. a diagram of simplicial sets with index category $[0, \infty)$.

A **map** of systems $X \to Y$ is a natural transformation of functors defined on $[0, \infty)$.

 $s\operatorname{Set}^{[0,\infty)}$ is the category of systems and natural transformations.

Examples

1) The functor $V_*(X)$, $s \mapsto V_s(X) = BP_s(X)$ is a system of spaces, for a data set $X \subset Z$.

2) If $X \subset Y$ in D(Z), the induced maps $P_s(X) \to P_s(Y)$, $V_s(X) \to V_s(Y)$ define maps of systems

 $P_*(X) o P_*(Y)$ (posets) and $V_*(X) o V_*(Y)$ (spaces).

Homotopy theories of systems: oldest is the **projective structure** (Bousfield-Kan, 1972):

A map $f: X \to Y$ is a **weak equivalence** (resp. **fibration**) if each map $X_s \to Y_s$ is a weak equiv. (resp. Kan fibration) of simplicial sets.

A map $A \rightarrow B$ is a **projective cofibration** if it has the left lifting property with respect all maps which are trivial fibrations.

Lemma 4.

Suppose that $X \subset Y$ in D(Z). Then $V_*(X) \to V_*(Y)$ is a projective cofibration.

The map $V_*(X) \to V_*(Y)$ is also a **sectionwise** cofibration, i.e. all maps $V_s(X) \to V_s(Y)$ are monomorphisms.

Fibrations and weak equivalences for the projective structure are defined sectionwise.

Controlled equivalences

Suppose that $f : X \to Y$ is a map of systems. Say that f is an *r*-equivalence if

- 1) the map $f: \pi_0(X) \to \pi_0(Y)$ is an *r*-isomorphism of systems of sets
- 2) the maps $f : \pi_k(X_s, x) \to \pi_k(Y_s, f(x))$ are *r*-isomorphisms of systems of groups, for all $s \ge 0$, $x \in X_s$, $k \ge 1$.

Observation: Suppose given a diagram of systems

$$\begin{array}{ccc} X_1 \stackrel{f_1}{\twoheadrightarrow} Y_1 \\ \text{sect } \simeq & \downarrow & \downarrow \simeq \text{ sect} \\ X_2 \stackrel{\bullet}{\xrightarrow{f_2}} Y_2 \end{array}$$

Then f_1 is an *r*-equivalence iff f_2 is an *r*-equivalence.

Examples: Stability results. A sectionwise equivalence is a 0-equivalence.

A **controlled equivalence** is a map which is an *r*-equivalence for some $r \ge 0$.

Lemma 5.

Suppose given a commutative triangle

$$\begin{array}{c} X \stackrel{f}{\to} Y \\ \downarrow g \\ h \qquad Z \end{array}$$

If one of the maps is an r-equivalence, a second is an s-equivalence, then the third map is a (r + s)-equivalence.

Proof.

Set theory.

Theorem 6.

Suppose that $i : A \rightarrow B$ is a sectionwise cofibration and an *r*-equivalence, and suppose given a pushout

$$\begin{array}{ccc} A \longrightarrow C \\ \downarrow & & \downarrow i_* \\ B \longrightarrow D \end{array}$$

Then *i*_{*} is a sectionwise cofibration and a 2*r*-equivalence.

Sketch (Whitehead theorem): There is a 2r-interleaving

$$\begin{array}{c} A_{s} \rightarrow FA_{s+2r} \\ \downarrow \qquad \downarrow \\ B_{s} \rightarrow FB_{s+2r} \end{array}$$

for a sectionwise fibrant model of i. The class of cofibrations admitting 2r-interleavings is closed under pushout.

Persistent homotopy theory

(A'): Suppose given a commutative diagram

If one of the maps is an *r*-equivalence, another is an *s*-equivalence, then the third is an (r + s)-equivalence.

(B): The composite of two cofibrations is a cofibration. Any isomorphism is a cofibration.

(C'): Cofibrations are closed under pushout. Given a pushout

$$\begin{array}{ccc} A \longrightarrow C \\ i \downarrow & \downarrow i_* \\ B \longrightarrow D \end{array}$$

with *i* a cofibration and *r*-equivalence, then i_* is a cofibration and a 2r-equivalence.

Persistent homotopy theory II

(D): For any object A there is at least one cylinder object $A \otimes \Delta^1$.

(E): All objects are cofibrant.

This is an adjusted list of axioms for a category of cofibations structure — works for projective or sectionwise cofibrations.

Lemma 7 (left properness).

Suppose given a pushout

$$\begin{array}{c} A \stackrel{u}{\to} C \\ i \downarrow & \downarrow \\ B \stackrel{u}{\to} D \end{array}$$

where i is a cofibration and u is an r-equivalence. Then u_* is a 2r-equivalence.

There is also a **patching lemma**.

ep-metric spaces (following Spivak)

An extended pseudo-metric space (**ep-metric space**) (X, D) is a set X and a function $D: X \times X \to [0, \infty]$ such that

1)
$$D(x, x) = 0$$
,
2) $D(x, y) = D(y, x)$,
3) $D(x, z) \le D(x, y) + D(y, z)$.

- Can have distinct x, y such that D(x, y) = 0 ("pseudo").
- Can have u, v such that $D(u, v) = \infty$ ("extended").

Every metric space (Y, d) is an ep-metric space via composition

$$Y \times Y \xrightarrow{d} [0,\infty) \subset [0,\infty].$$

A morphism $f : (X, d_X) \to (Y, d_Y)$ of ep-metric spaces is a function $f : X \to Y$ such that

$$d_Y(f(x), f(y)) \le d_X(x, y)$$
 (non-expanding).

ep-Met is the category of ep-metric spaces and their morphisms.

(X, d) an ep-metric space and $p: X \to Y$ a surjective function. For $x, y \in Y$ set

$$D(x,y) = \inf_{P} \sum_{i=0}^{k} d(x_i, y_i),$$

"Polygonal path" P: pairs (x_i, y_i) in X with $x = p(x_0)$, $y = p(x_k)$, $p(y_i) = p(x_{i+1})$.

For $x, y \in X$, P : x, y is path from p(x) to p(y), so $D(p(x), p(y)) \le d(x, y)$.

Polygonal paths concatenate, so $D(x, z) \le D(x, y) + D(y, z)$.

$$D(x,x) = 0$$
 and $D(x,y) = D(y,x)$.

Quotient map p:(X,d)
ightarrow (Y,D) satisfies universal property.

ep – Met is cocomplete

1) Suppose (X_i, d_i) , $i \in I$ is a set of ep-metric spaces. There is an ep-metric D on $\bigsqcup_i X_i$, with

$$D(x,y) = egin{cases} d_i(x,y) & ext{if } x,y \in X_i, \ \infty & ext{if } x,y ext{ are in different summands}. \end{cases}$$

 $\bigsqcup_{i} (X_{i}, d_{i}) \text{ is a coproduct in } ep - \text{Met.}$ 2) Suppose given morphisms $f, g : (X, d_{X}) \to (Y, d_{Y})$ in ep - Met. Form the set theoretic coequalizer

$$X \xrightarrow[g]{f} Y \xrightarrow{p} C,$$

Then p is a surjective function, and we give C the quotient ep-metric D.

$$(X, d_X) \xrightarrow{f}_{g} (Y, d_Y) \xrightarrow{p} (C, D)$$

is a **coequalizer** in *ep* – Met.

Excision

Suppose given subspaces $X, Y \subset Z$ of a finite metric space (Z, d) such that $Z = X \cup Y$.

 $X \cup_{em} Y$ is **pushout** in ep – Met.

The map $X \cup_{ep} Y \to Z$ is the identity on the underlying sets. The metric D on $X \cup_{ep} Y$ is defined by

$$D(x,y) = \inf_{P} \{\sum_{i} d(x_{i}, x_{i+1})\},\$$

indexed over sequences $P: x = x_0, x_1, ..., x_k = y$ such that each pair (x_i, x_{i+1}) is either in X or in Y.

Fact: The induced map

$$\pi_0(V_s(X,d)\cup V_s(Y,d)) o \pi_0 V_s(X\cup_{ep} Y,D)$$

is a bijection.

Question: What about homotopy/homology groups?

Simplex categories

sSet^[0, ∞] is the diagram category of functors $[0, \infty] \rightarrow s$ Set. Suppose that K is a simplicial set and $s \in [0, \infty]$.

$$L_s K_t = egin{cases} K & ext{if } t \geq s, \ \emptyset & ext{if } t < s. \end{cases}$$

Fact: hom $(L_s K, X) = hom(K, X_s)$ for $X : [0, \infty] \rightarrow s$ Set

A simplex of X is a morphism $\sigma : L_s \Delta^n \to X$ (an *n*-simplex of X_s). A morphism of simplices is a commutative diagram

The simplex category is denoted by Δ/X .

Realization

Write U_s^n for the metric space structure on $n = \{0, 1, ..., n\}$ with d(i, j) = s.

If $\theta: m \to n$ is a poset map and $s \le t$, then θ induces an ep-metric space map $\theta: U_t^m \to U_s^n$, since

$$d(\theta(i), \theta(j)) \le s \le t = d(i, j), \text{ if } i \ne j.$$

The assignment which takes a simplex $\sigma : L_s \Delta^n \to X$ to the space U_s^n defines a functor $\Delta/X \to ep$ – Met. Then

$$\operatorname{Re}(X) := \varinjlim_{L_s \Delta^n \to X} U_s^n$$

is the **realization** of X in ep - Met.

If $Y \in ep$ – Met then S(Y) is the diagram with

$$S(Y)_{s,n} = \hom(U_s^n, Y).$$

Singular functor $S: ep - Met \rightarrow sSet^{[0,\infty]}$ is right adjoint to Re.

Suppose that $X : [0,\infty] \to s$ Set is a diagram. Then

$$\varinjlim_{s} X_{s} = X_{\infty}$$

because ∞ is terminal in $[0,\infty]$.

Lemma 8.

Given $X : [0,\infty] \to s$ Set, then $\operatorname{Re}(X) \cong (X_{\infty}, D)$, where

$$D(x,y) = \inf_{P} \left\{ \sum_{i=0}^{k} s_i \right\}$$

where P is a polygonal path consisting of 1-simplices $x_i \rightarrow y_i$ in X_{s_i} , with $x_0 \mapsto x, x_k \mapsto y$, and y_i, x_{i+1} have the same image in X_{∞} .

Examples

(X, d) a totally ordered finite ep-metric space.

The Vietoris-Rips complex $V_s(X)$ is a simplicial set with *n*-simplices

$$x_0 \leq x_1 \leq \cdots \leq x_n$$

with $d(x_i, x_j) \leq s$ for all i, j. $BP_s(X)$ is the barycentric subdivision of $V_s(X)$. Here, $s \leq \infty$.

Lemma 9.

X a totally ordered finite ep-metric space. Then $\operatorname{Re}(V_*(X)) \cong X$.

Proof.

 $D(x, y) = \inf_P \sum d(x_i, x_{i+1})$, indexed over sequences $x = x_0, x_1, \dots, x_k = y$. Then $d(x, y) \leq D(x, y)$ by the triangle identity.

 $D(x,y) \leq d(x,y)$ because (x,y) is a path in some X_s .

Canonical map

(X, d) a totally ordered finite ep-metric space.

The canonical map $\eta: V(X) \to S(\operatorname{Re}(V(X)))$ has the form $\eta: V(X) \to S(X),$

where η takes the simplex $x_0 \le x_1 \le \cdots \le x_n$ to the sequence (x_0, x_1, \ldots, x_k) (forgets the ordering — the sequence is a "bag of words").

Theorem 10.

(X, d) a totally ordered finite ep-metric space. Then each map

$$\eta: V_s(X) \to S(X)_s$$

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that $BNV_s(X) \rightarrow BNS(X)_s$ and $\pi : sd S(X)_s \rightarrow BNS(X)_s$ are weak equivalences.

UMAP (Healy-McInnes)

(X, d) is a finite ep-metric space.

Choose a **neighbourhood set** N_x for each $x \in X$.

Set $r_x = \max_{y \in N_x} d(x, y)$.

e.g. N_x is set of k nearest neighbours if X is totally ordered, for some k.

Set
$$(U_x, d_x) = \bigvee_{y \in N_x} (\{x, y\}, d)$$
 in ep – Met.
Then $d_x(y_1, y_2) = d(x, y_1) + d(x, y_2)$ for $y_1, y_2 \in N_x$.

Extend to an ep-metric d_x on X by setting $d_x(y, z) = \infty$ if either y or z is outside of U_x .

We have inclusions $X \subset V(X, d_x)$, $x \in X$. Form iterated pushout

$$V(X, N) = \vee_X V(X, d_x) \simeq \vee_X S(X, d_x).$$

The metrics d_x can be rescaled, but the diagram V(X, N) is "the" **UMAP complex**.

UMAP algorithm: apply TDA machinery (e.g. π_0) to V(X, N).

Comparisons

(X, d) is a finite totally ordered ep-metric space, with neighbourhoods $N = \{N_x, x \in X\}$.

 $\phi: V(X, N) = \lor_X V(X, d_x) \rightarrow V(X)$ canonical map.

(x, y) in X is a **neighbourhood pair** if $y \in N_x$ or $x \in N_y$. Graph $\Gamma(X, N) \stackrel{i}{\subset} V(X)$ with vertices X and edges all nbhd pairs.

Lemma 11.

If all 1-simplices of $V_s(X)$ are nbhd pairs, then i_* is an iso.

Example: $N_x = k$ -nearest neighbours, $r_x = \max_{y \in N_x} d(x, y)$, $s < r_x$ for all x.

Comparisons II

Fact: $V(X, N)_{\infty}$ is a big wedge of circles.

 $V(X, d_X) = \Delta^X = \Delta^N$ for N + 1 = |X|, so $V(X, N)_{\infty} = \vee_N \Delta^n$ (N + 1 summands).

Define $N \to \Delta^N = X_i$, $0 \le i \le k$, $Y = \bigvee_N X_i$ (iterated pushout). Each X_i is contractible, so $Y/X_0 \simeq Y$, and

$$Y/X_0 = (X_1/N) \lor \cdots \lor (X_k/N) = (\Delta^N/N) \lor \cdots \lor (\Delta^N/N)$$

and each

$$\Delta^N/N \simeq \Sigma N \simeq \Sigma (S^0 \lor \cdots \lor S^0)$$
 (N summands, N pointed by 0)
 $\simeq S^1 \lor \cdots \lor S^1$.

Consequence: $V(X, N)_{\infty} \simeq \bigvee_{i=1}^{N^2} S^1 \ (N = |X| - 1).$

J.F. Jardine.

Metric spaces and homotopy types.

Preprint, http://uwo.ca/math/faculty/jardine/, 2020.

J.F. Jardine.

Persistent homotopy theory.

Preprint, arXiv: 2002:10013 [math.AT], 2020.

Leland McInnes and John Healy.

Accelerated hierarchical density based clustering.

In 2017 IEEE International Conference on Data Mining Workshops, ICDM Workshops 2017, New Orleans, LA, USA, November 18-21, 2017, pages 33–42, 2017.

D.I. Spivak.

Metric realization of fuzzy simplicial sets.

Preprint, 2009.