Automata and topological theories Mee Seong Im US Naval Academy February 15, 2023 #### Motivation. Why study topological quantum field theory (TQFT)? It computes topological invariants. It is also related to knot theory, 4-manifolds, algebraic topology, moduli spaces in algebraic geometry. Category theory is a way of recognizing constructions that appears when you are talking about different kinds of mathematical objects that have something in common. Example: cartesian product of abelian groups, cartesian product of manifolds, etc. Although the objects are different, the general notion of cartesian product is the same. TQFT produces a tower of algebraic structures, each dimension related to the previous one by the process of *categorification*. Remark: some higher dimensional theories exist but are not well-understood. #### Background. Definition: a *manifold* is a smooth, compact, (oriented) topological space. Note: manifolds may have boundaries. Definition: a *closed manifold* is a manifold without a boundary. #### Examples: - a sphere - a donut - a notebook paper (a 2-manifold with 1-dimensional boundary) - the boundary of an d-manifold is an (d-1)-manifold. Organize closed manifolds with a fixed dim as a category Cob(d): objects: closed (d-1)-manifolds, morphisms: $\text{Hom}(M, N) \simeq \{B : \partial B \simeq \overline{M} \sqcup N\} / \text{diffeom}$, where \overline{M} is M in opposite orientation. Two bordisms are the same in Cob(d) if they are diffeomorphic relative to their boundary, and composition is given by gluing the morphisms. #### The definition of TQFT. #### Definition TQFT of dimension d is a symmetric, monoidal functor $$Z: \mathsf{Cob}(d) \longrightarrow \mathsf{Vect}_{\mathbb{C}},$$ which preserves tensor products \otimes . The \otimes in Cob(d) is given by disjoint union of manifolds while \otimes in Vect \mathbb{C} is given by the tensor product of vector spaces: $$Z(M \sqcup N) = Z(M) \otimes Z(N), \quad Z(\varnothing) \simeq \mathbb{C},$$ where $\mathbb C$ is a unit with respect to the tensor product on $\mathbb C$ -vector spaces. # Example: Cob(1). Let d = 1. Objects are 0-dimensional manifolds with orientation: $\stackrel{+}{\bullet}$, $\stackrel{-}{\bullet}$. $Z\left(egin{array}{c} + \\ ullet \end{array} ight)=X$ finite dimensional $\mathbb C$ -vector space, where ullet has positive orientation. $Z\left(ullet{ullet}\right)=Y$ finite dimensional \mathbb{C} -vector space, where \overline{ullet} has negative orientation. Oriented 1D TQFT is a pair X, Y satisfying: The maps Z(A) and Z(B) exhibit that X and Y must be duals of each other: $Y \simeq X^{\vee}$. Conclusion: 1-dimensional TQFT is determined by what it does to a single point, i.e., it is determined by a single vector space. One can evaluate field theory on other manifolds to get invariants. For example, evaluate field theory on a circle with no defects to get the only invariant on a complex vector space, which is its dimension: a complex vector space is determined up to isomorphism by its dimension. #### Inner boundary points and defects. Add inner boundary points. Add defects. $a, b: X \rightarrow X$ linear operators (no relations) ## Combine inner boundary points and defects. Left: circle with a sequence of defects computes the trace of the corresponding product of operators. Center: a defect near an endpoint applies the operator to the vector associated to the endpoint for "in" oriented endpoints. Right: for "out" endpoint, the operator acts on a functional f. #### Evaluation on closed diagrams. Assume that a more general evaluation is given, but only on floating (closed) diagrams, intervals and circles with defects. A floating interval with defects $a_1 \cdots a_n$ evaluates to $\alpha_1(a_1 \cdots a_n) \in \mathbb{C}$. A circle with defects $b_1 \cdots b_m$ evaluates to $\alpha_{\circ}(b_1 \cdots b_m) \in \mathbb{C}$. $\Rightarrow \alpha_{\rm I}, \alpha_{\rm o}$ are functions from words (resp. circular words) to \mathbb{C} . Assume letters (defects) belong to a finite alphabet Σ . Σ^* : the set (monoid) of all words in Σ . Then $$\alpha_{\mathsf{I}}: \Sigma^* \longrightarrow \mathbb{C}, \quad \alpha_{\mathsf{o}}: \Sigma^*/_{\sim} \longrightarrow \mathbb{C}$$ are two functions, where \sim is the equivalence relation on words: $\omega_1\omega_2\sim\omega_2\omega_1$ for words ω_1,ω_2 . Given such a pair $\alpha = (\alpha_{\rm I}, \alpha_{\rm o})$, build a generalized 1D topological theory (this is weaker than a TQFT). Extend evaluation α to unions of decorated circles and floating intervals via multiplicativity condition. #### Universal construction over \mathbb{C} and \mathbb{B} . In a universal construction of topological theories, one starts with a multiplicative evaluation of closed objects (such as closed d-manifolds) and builds a vector space for each (d-1)-manifold N via a linear combination of d-manifolds M with boundary N, $\partial M \cong N$. A linear combination $\sum_i \lambda_i M_i = 0$ with each $\partial M_i \cong N$ if for any M with $\partial M \cong N$, the evaluation $$\sum_{i} \lambda_{i} \alpha(\overline{M} \cup_{N} M_{i}) = 0.$$ Add defects to manifolds \Rightarrow one-dimensional (d = 1) case becomes nontrivial. Changing from ground field, such as \mathbb{C} , to a semiring (for example, Boolean semiring \mathbb{B}) further adds complexity to the theory and surprisingly relates it to regular languages and automata. We will now discuss this nonlinear and more complicated case. $\mathbb{B} = \{0, 1: 1+1=1\}$ Boolean semiring. Σ : alphabet (a finite set of letters). Σ^* : free monoid on the letters Σ . Example: $\Sigma = \{a, b\}$. Words aaa, ababbba, bbaaab, etc. Empty word \emptyset is unit element. FSA (Finite State Automaton): words in Σ are inputs; finitely many states Q and transitions between the states $\Sigma \times Q \to Q$ according to the letters read. Has initial (starting) state $q_{\rm in}$ and terminating (accepting) states Q_t . Example: Language $L=(a+b)^*b(a+b)$. Second from last letter is b. Four states. Initial state given by the empty word $q_{\rm in}=x$. Accepting states $Q_t=\{z,y+z\}$. The states z and y+z correspond to the words $(a+b)^*ba$ and $(a+b)^*bb$, respectively. Notation y+z comes from relation to \mathbb{B} -modules. Regular language: one recognized by an FSA. A word can be viewed as an interval with dots (defects) labelled by letters of the language L_1 . Reading a sequence along oriented interval gives a word $\omega = a_1 a_2 \cdots a_n$. Evaluation $\alpha_{\mathbf{l}}: \Sigma^* \longrightarrow \mathbb{B}$ of decorated intervals is the same as a (floating) interval language $L_{\mathbf{l}}: \omega \in L_{\mathbf{l}} \Leftrightarrow \alpha_{\mathbf{l}}(\omega) = 1$. Add a circular language L_{\circ} (for words on a circle $\omega_1\omega_2 \in L_{\circ} \Leftrightarrow \omega_2\omega_1 \in L_{\circ}$). With pair $L = (L_I, L_\circ)$, associate a \mathbb{B} -valued multiplicative evaluation α of decorated 1-manifolds (defects labelled by letters in Σ). $$lpha$$: closed 1-dimensional manifolds \longrightarrow \mathbb{B} which satisfies $$\alpha(\mathit{M}_1 \sqcup \mathit{M}_2) = \alpha(\mathit{M}_1)\alpha(\mathit{M}_2),$$ $$\alpha(\emptyset_1) = 1 \text{ since } m \text{ is multiplicative},$$ $$\alpha(\mathit{M}_1) = \alpha(\mathit{M}_2) \text{ if } \mathit{M}_1 \cong \mathit{M}_2.$$ View interval as a "closed" 1-manifold. $\alpha = (\alpha_{\rm I}, \alpha_{\rm o})$ is determined by its values $\alpha_{\rm I}(\omega)$ on decorated floating intervals and values $\alpha_{\rm o}(\omega)$ on decorated circles: $$\alpha_{\mathsf{I}}(\omega) = 1 \Leftrightarrow \omega \in \mathcal{L}_{\mathsf{I}} \quad \text{ and } \quad \alpha_{\circ}(\omega) = 1 \Leftrightarrow \omega \in \mathcal{L}_{\circ}.$$ Universal construction starts with a (multiplicative) evaluation of closed n-dimensional objects and produces state spaces for (n-1)-dimensional objects and maps for n-cobordisms between these objects. Use universal construction to define state spaces of oriented 0-dimensional manifolds (sign sequences $\varepsilon = (---+)$, for example). Sign sequence: $\varepsilon = (---+)$. Sign sequences are objects of our category of 1-dim cobordisms with 0-dim defects in Σ . From α , one can define state spaces $A(\varepsilon)$ for 0-dimensional objects ε , by starting with a free $\mathbb B$ -semimodule $\mathrm{Fr}(\varepsilon)$ with a basis $\{[M]\}_{\partial M\cong\varepsilon}$ given by formal symbols [M] of all 1-dimensional objects M which have ε as outer boundary (with a fixed diffeomorphism $\partial M\cong\varepsilon$). A state in the state space $A(\varepsilon)$: On $\operatorname{Fr}(\varepsilon)$, introduce a bilinear pairing (,) $_{\varepsilon}$ given on basis elements $[M_1], [M_2]$ with $\partial M_1 \cong \varepsilon \cong \partial M_2$ by coupling M_1, M_2 along the boundary and evaluating the resulting closed object $M_1 \cup_{\varepsilon} M_2$ via α : $$([M_1],[M_2])_{\varepsilon} := \alpha(M_1 \cup_{\varepsilon} \overline{M_2}).$$ $$\begin{bmatrix} - & - & + & & - & - & + & \\ \downarrow & & & & & \\ b & & & & & \\ \end{bmatrix} = \alpha \begin{bmatrix} \downarrow & & & & \\ \\ \downarrow & &$$ Note that $A(+) \cong A(-)^* = \text{Hom}(A(-), \mathbb{B})$ via $\omega \mapsto (\omega' \mapsto \alpha(\omega'\omega)) \in \mathbb{B}$. Now define the state space $A(\varepsilon)$ as the quotient of $Fr(\varepsilon)$ by an equivalence relation, $$A(\varepsilon) := \operatorname{Fr}(\varepsilon)/\sim,$$ where $\sum_i [M_i] \sim \sum_j [M_j']$ if for any M with $\partial M = arepsilon$, $$\sum_{i} \alpha(M_{i} \cup_{\varepsilon} \overline{M}) = \sum_{i} \alpha(M'_{j} \cup_{\varepsilon} \overline{M}) \in \mathbb{B} = \{0, 1 : 1 + 1 = 1\}.$$ State space $A(\varepsilon)$ is spanned by \mathbb{B} -linear combinations of 1-manifolds M with $\partial M \cong \varepsilon$, modulo relations: two linear combinations are equal if for any way to close them up and evaluate using α , the result is the same. One of the relations for the language $L_1 = (a + b)^* b(a + b)$: $$\begin{bmatrix} - \\ \end{bmatrix} - \begin{bmatrix} - \\ \end{bmatrix} \alpha^n \Leftrightarrow \alpha \begin{pmatrix} - \\ - \\ \end{bmatrix} = \alpha \begin{pmatrix} - \\ - \\ \end{bmatrix} \text{ for any } \omega' \in \Sigma^*.$$ If $\omega' = ba$, then $$\alpha \left(\begin{array}{c} \bullet \ a \\ \bullet \ b \\ - \\ \downarrow - \end{array} \right) = \alpha \left(\begin{array}{c} \bullet \ a \\ \bullet \ b \\ - \\ \bullet \ a^n \end{array} \right) = 1$$ If $\omega' = ab$, then $$\alpha \begin{pmatrix} \bullet & b \\ \bullet & a \\ - & \bullet \\ - & \bullet \end{pmatrix} = \alpha \begin{pmatrix} \bullet & b \\ \bullet & a \\ - & \bullet \\ \bullet & a \end{pmatrix} = 0$$ State spaces A(-), A(+) depend only on the interval language L_{I} , not on the circular language L_{\circ} (spaces A(+-), etc. depend on both). An evaluation table of the language $L = (a+b)^*b(a+b)$ to compute the bilinear form on our spanning sets for A(+) and A(-) with values in \mathbb{B} . The matrix is not symmetric. | $spanning_{L} \chi$ | | | X | y | X | Z | <i>y</i> y | y + z | |---------------------|------------------------------------|-----------|----------|-------------------|-----------|----------------------------|------------|-------------------| | spanning
elmt | | \mapsto | i-a
→ | ∮ <i>b</i> | aa
••} | - j a
∳ b | ba | ∳ <i>b</i> | | x' | ├ ─ | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | y' | ¦←a | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | y' | Ťb | 0 | 0 | 1 | 0 | 0 | 1 | 1 | | 0 | aa
• | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | - a
a
b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | z' | ∳ ba | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | z' | ♦ b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Defining relations: $$x + y = y$$ $$x + z = z$$ $$A(-) = \frac{\mathbb{B}x \oplus \mathbb{B}y \oplus \mathbb{B}z}{\langle x + y = y, x + z = z \rangle}$$ Consists of 5 elements: $$\{0, x, y, z, y + z\}$$, with x, y, z irreducible. State space of A(+-) is spanned by: A 1-manifold M with $\partial M = \varepsilon' \sqcup -\varepsilon$ induces a map $A(\varepsilon) \longrightarrow A(\varepsilon')$ by concatenation. Get a functor from category of Σ -decorated oriented 1-dim cobordisms to $\mathbb B$ -semimodules. No subtraction in $\mathbb B$ -semimodules; can add only. A \mathbb{B} -semimodule V is a commutative idempotented monoid under addition: $$x + x = x$$ for $x \in V$ since $1 + 1 = 1$. Also $0 + x = x$, $x + y = y + x$, $(x + y) + z = x + (y + z)$. Such V correspond to sup-semilattices, with join (least upper bound) $x \lor y := x + y$, and $x \le y$ iff x + y = y. 0 is the minimal element, i.e., $0 \le x$ for any x. Any finite sup-semilattice is a finite lattice, with meet $x \wedge y := \sum_{z \leqslant x,y} z$ and $1 = \sum_{z \in V} z$. We mostly use \mathbb{B} -semimodule structure (join, not meet). \mathbb{B} -semimodules \Leftrightarrow comm. idemp. monoids \Leftrightarrow sup-semilattices (with 0) finite (sup)-semilattices ⇔ finite lattices \mathbb{B} -semimodules constitute a category; morphisms are semimodule homomorphisms $f:V\longrightarrow W,\ f(0)=0,\ f(x+y)=f(x)+f(y).$ $\mathsf{Hom}(V,W)$ is a \mathbb{B} -semimodule (category \mathbb{B} -mod has internal homs). But \mathbb{B} -mod is not a rigid category (cannot "bend" objects and morphisms). Subcategory of finite projective \mathbb{B} -semimodules (finite distributive (semi)lattices) is rigid. Categories of cobordisms in the universal construction that we build from evaluations are rigid. Any cobordism C between $\varepsilon, \varepsilon'$ induces a semimodule homomorphism $A(\varepsilon) \to A(\varepsilon')$ of concatenation with C: A cobordism from (--+-++) to (--++-++). A cobordism from ε to ε' can be viewed as an element in the state space $A(\varepsilon' \sqcup -\varepsilon)$, i.e., a cobordism $C : \varepsilon = (+-) \to \varepsilon' = (+-+)$ corresponds to a state in the state space A(+-++-): Recall the language $L=(a+b)^*b(a+b)$. The module A(-) is spanned by x,y,z, and has relations x+y=y and x+z=z. This module is not free. We'll encounter its free cover later in the construction of minimal NFA (nondeterministic FA) for L. The semimodule consists of 5 elements: $\{0, x, y, z, y + z\}$. The lattice corresponding to this language is: The finite topological space associated to this example: Lattices that come from finite topological spaces are distributive. If a lattice contains either as a sublattice, then the lattice is not distributive. In such a case, there is no finite topological space associated to the language. Example: for the language $L_1 = \{a, a^2\}$, lattices A(-), A(+) are not distributive. For the language $L_1 = \{a, a^2\}$, how should we draw the finite topological space associated to L_1 ? But $x_0 \neq x_0 + x_1$. So the open set containing x_0 cannot be the entire space. But since $x_0 \neq x_0 + x_2$, this finite topological space does not correspond to L_1 as well. **Theorem**. Languages L_1, L_0 are regular \Leftrightarrow the state space $A(\varepsilon)$ is a finite \mathbb{B} -semimodule for all sequences ε . Get a \mathbb{B} -valued topological theory with finite hom spaces for any such pair of languages. To recover minimal automaton for $L_{\rm I}$, consider the state space A(-). It consists of \mathbb{B} -linear combinations of diagrams below on the left, modulo equivalence relations coming from the pairing $$A(-) \times A(+) \longrightarrow \mathbb{B}$$. How do we build the minimal deterministic FSA and nondeterministic FSA for L_1 from A(-)? Free monoid Σ^* generated by Σ (monoid of words) acts on A(-), by composing with dots at the end of the strand. State space A(-) contains the subset $Q^- = \{\langle \omega | \}$ of *pure* states. Q^- is then the set of states of the minimal *deterministic* FSA for L_1 . Action of Σ comes from restriction of its action on A(-) (action by concatenation with dots at the top). Initial state $q_{\rm in}=\langle\emptyset|$. A state $\langle\omega|$ is accepting iff $\alpha_{\rm I}(\omega)=1$. Nondeterministic FSA for $L_{\rm I}$ come from coverings of A(-) by free $\mathbb B$ -modules with lifted action of Σ and unit, trace α maps. $$\widetilde{m}_a \curvearrowright \mathbb{B}^J$$ free semimodule cover; minimal NFA for $L_{\rm I}$, where $J={\rm irr}(A(-))$ (irreducible if $x\neq y+z$, where $y\neq x$, $z\neq x$) $m_a \curvearrowright A(-)$ state space of 0-manifold $m_a \curvearrowright Q_-$ minimal DFA for $L_{\rm I}$ Every word gives a diagram in A(-). Start with a state Φ^{-} and take images of all $\omega \in A(-)$ under the action by Σ^* , i.e., In general, there could be more than 1 minimal NFA. Two minimal nondeterministic automata on 3 states that accept the language $L = (a+b)^*b(a+b)$. The second automaton has an additional b arrow from y to x and an additional b loop at x. Multiple minimal NFA for L appear due to several ways of lifting action of Σ^* from A(-) to \mathbb{B}^J . Some regular languages allow decomposition of identity $$\alpha \left(\begin{array}{c} \uparrow \omega \\ \uparrow \upsilon \\ \downarrow \upsilon \end{array} \right) = \sum_{i=1}^{m} \alpha \left(\begin{array}{c} \uparrow \omega \\ \uparrow \omega \\ \downarrow \upsilon \\ \downarrow \upsilon \end{array} \right) \alpha \left(\begin{array}{c} \uparrow v_i \\ \uparrow \upsilon \\ \downarrow \upsilon \\ \downarrow \upsilon \end{array} \right)$$ for some set of pairs of words (u_i, v_i) , $1 \le i \le m$. That is, for any $\omega, \upsilon \in \Sigma^*$, $$\alpha_I(\omega v) = \sum_{i=1}^m \alpha_I(\omega u_i) \alpha_I(v_i v).$$ Returning to our example $L = (a + b)^*b(a + b)$, So $$+ \underbrace{\downarrow}_{\omega} \underbrace{\downarrow}_{v} \underbrace{\downarrow}_{v} \underbrace{\downarrow}_{a} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{b} \underbrace{\downarrow}_{c} \underbrace{\downarrow}_{c}$$ $$\alpha_{\mathsf{I}}(\omega v) = \alpha_{\mathsf{I}}(\omega) \, \alpha_{\mathsf{I}}(bav) + \alpha_{\mathsf{I}}(\omega b) \, \alpha_{\mathsf{I}}(bv) + \alpha_{\mathsf{I}}(\omega ba) \, \alpha_{\mathsf{I}}(v).$$ For L_1 with a decomposition of the identity, there is a unique associated circular language such that the decomposition still holds: $$:= \sum_{i=1}^{m} \stackrel{-+}{\longrightarrow} u_i \stackrel{--}{\longrightarrow} v_i,$$ $$\alpha_{\circ}\left(\begin{array}{c} \bullet \omega \end{array}\right) := \alpha_{\mathsf{I}}\left(\begin{array}{c} \bullet \omega \\ \bullet \end{array}\right) = \sum_{i=1}^{m} \alpha_{\mathsf{I}}\left(\underbrace{u_{i}}^{\omega} \underbrace{v_{i}}\right) = \sum_{i=1}^{m} \alpha_{\mathsf{I}}(v_{i}\omega u_{i}).$$ This gives a \mathbb{B} -valued TQFT: $A(\varepsilon)$ is the tensor product of A(+), A(-) for the sequence of signs in ε . For example, $A(++-) \cong A(+) \otimes A(+) \otimes A(-)$. This is a TQFT for oriented 1-manifolds with 0-dimensional Σ -labelled defects, valued in the Boolean semiring \mathbb{B} . **Proposition**. A regular language L has a decomposition of the identity if and only if A(-) is a projective \mathbb{B} -semimodule (equivalently, a distributive lattice). A finite semimodule P is projective if it's a retract of a free semimodule: $$P \stackrel{\iota}{\longrightarrow} \mathbb{B}^n \stackrel{p}{\longrightarrow} P, \quad p\iota = \mathrm{id}_P.$$ Note that $\iota \circ p$ is an idempotent. Such semimodules correspond to finite topological spaces X, with elements of the semimodule given by open subsets $U \subset X$ and $U + V := U \cup V$. ## Summary. A pair $\alpha = (\alpha_1, \alpha_0)$ gives rise to a Boolean topological theory (state spaces are finite) iff α_1, α_0 are regular languages. Such a theory is a weakly monoidal functor from the category of oriented 1D cobordisms with Σ -defects to the category of finite (semi)modules over \mathbb{B} . State space A(-) is determined by α_1 only. If A(-) is a projective $\mathbb B$ -semimodule (comes from a finite topological space), there is a unique circular language α_\circ making α into a Boolean 1D TQFT with defects (maps $A(\varepsilon)\otimes A(\varepsilon')\longrightarrow A(\varepsilon\varepsilon')$ are isomorphisms of state spaces). #### Work in progress. - 1. Distributivity of A(-) is a subtle property of a regular language α_{\parallel} , even for - $\Sigma = \{a\}$ (single letter). Study distributivity of regular languages (joint with R. Kaldawy, M. Khovanov, Z. Lihn). - 2. Any NFA for $\alpha_{\rm I}$ gives rise to a circular language (via all cycles in the NFA) and a 1D TQFT with defects, even when A(-) is not projective. Study these TQFTs. - 3. Allow defects to accumulate towards inner endpoints. Evaluation of infinite words. Resulting topological theories relate to sofic systems and symbolic dynamics (joint with M. Khovanov, P. Gustafson). - 4. Automata with boundary. Boolean evaluations beyond automata. - 5. Boolean two-dimensional topological theories and TQFTs. Ultimately hope to study these topological theories in dimension three as well. # Thank you!