
P Time, A Bounded Arrows Category, &
Entailments (NYC CTS Talk)

Jim Otto, 3/29/23 (10:00 pm)

1 Introduction

In revisiting the P Time functions characterization from my thesis [CD1],
the Bill Lawvere words

Doctrine Comprehension

are key.

1.1 Doctrines

Our doctrines are roughly as in Kock & Reyes [KR]. While we may
eventually wish them to be higher dimensional, for now they are 1-
dimensional categories whose objects are small categories with chosen
structure. Further they are either [AR]

locally �nitely presentable
or locally �nitely multi-presentable

Here we consider doctrines for

1

1.1 Doctrines 1 INTRODUCTION

PR primitive recursion
PTime P Time functions
ZC~ toposes with numbers, choice, & precisely 2 truth values

The 1st 2 are locally �nitely presentable, and thus have initial categories.
The 3rd is likely only locally �nitely multi-presentable, lacks an initial
category, but instead has an initial family of categories. Keep in mind
that the locally �nitely presentable category of small commutative rings
has the initial ring

Z

while the locally �nitely multi-presentable category of small �elds has
the initial family of �elds

{Q, · · · Zp, · · · }

Locally �nitely presentable categories can be speci�ed using strong mod-
els of small sets of entailments, while locally �nitely multi-presentable
categories can be speci�ed using strong models of small sets of multi-
entailments [MES1]. For a locally �nitely presentable category, this
speci�cation by entailments allows its initial object to be constructed
using answer over deduction fractions [CD3, CD2]. Here our entailments
present �nitely presentable arrows between our structures. While our
structures are sets with a small graph acting on the left. They are in-
spired by Makkai's sketches [Mak], as well as by presheaves. Our multi-
entailments are (modulo presentation) �nite discrete base cones of our
entailments, with a leg for each alternative. Strong models of small sets
of multi-entailments are enough to capture classical multi-sorted 1st or-
der logic [MEN2, Joh2]. Here strong modeling is by cone orthogonality
[AR].

2

3 THE PRIMITIVE RECURSION CHARACTERIZATION1.2 Comprehensions

1.2 Comprehensions

Joaquín Díaz Boils [DB1] emphasizes the use of comprehensions in cut-
ting recursion down to complexity. I learned of comprehensions from
Du²ko Pavlovi¢ [Pav]. I use 2-comprehensions in passing from PR to
PTime. They come from thinking of the ordinal 2 as a category, and
then looking at its endo-functors and the natural transformations be-
tween them. 3- & V- comprehensions also appear in my thesis [CD1].

2 Genealogy

Our P Time functions characterization has the genealogy

A Cobham (65) L Román (89)
Bellantoni & Cook (92) Me (95)

L Román [Rom] used the PR doctrine to characterize the primitive recur-
sive functions. A Cobham [Cob] used explicitly bounded recursion to cut
down primitive recursion to the P Time functions. Bellantoni & Cook
[BC2] used 2 tiers of numbers to magically make the Cobham bounds
become implicit! I abstracted from a numeric arrows category to modify
the PR doctrine to the PTime doctrine, which I used to characterize the
P Time functions. This numeric arrows category has the tier 0 & tier 1
numbers

− : N→ 1 id : N→ N
Here N is the set {0, 1, 2, · · · } of natural numbers, 1 is the singleton
set {0}, and id is the identity function.

3 The Primitive Recursion Characterization

The PR doctrine consists of small categories with chosen structure, �nite
products, and product stable natural numbers objects. Entailments for

3

3.1 Base 13 THE PRIMITIVE RECURSION CHARACTERIZATION

this doctrine are in [AH1]. Let Num be the category with

objects the �nite products of N
arrows the functions between these objects

Let I be the initial category in PR. Since Num is in PR, there is a unique
PR functor

c : I → Num

L Román showed that the primitive recursive functions are precisely
those functions in the image of this functor c.

3.1 Base 1

A base 1 natural numbers object in a category C, with terminal object
1, is an initial object

1 N Nz s

in the category with objects the C objects & arrows

1 Y Y
f g

and arrows the C commuting squares

1 Y Y

1 Z Z

f

r r

g

h k

The PR doctrine is abstracted from the numeric category Num. In par-
ticular, there we can choose 1 = {0} and then have the base 1 natural
numbers object

z : 1→ N N← N : s
inclusion s x = x+ 1

4

3 THE PRIMITIVE RECURSION CHARACTERIZATION3.2 Base 2

3.2 Base 2

For (dyadic) base 2, rather than base 1, replace the initial C iteration
diagram

1 N Nz s

with the initial C iterations diagram

1 N N

N

z s

t

In Num we have such a base 2 natural numbers object by

z : 1→ N N← N : s N← N : t
inclusion s x = 2x+ 1 t x = 2x+ 2

This is dyadic, rather than binary, since it uses digits 1 & 2 rather than
0 & 1. This avoids leading zero issues. For primitive recursion, it doesn't
matter whether we use base 1 or base 2. To get the P Time functions we
do need to use base 2. If we instead used base 1, we would end up with
the Linear Space (in the sense of computational complexity!) functions
[Bel, Rit, CD1].

3.3 Product Stability

For a category C with object X, we use the polynomial category C [X]
[LS] to specify product stability. It is the full category in the slice cate-
gory C/X of the left projections

πL : X × Y → X

We have the functor

5

3.4 Smallness 4 THE PTIME DOCTRINE

pb−X : C → C [X]
Y 7→ pull back Y → 1 along X → 1

A C natural numbers object is stable under products with X when pb−X
takes it to a C [X] natural numbers object. This last natural numbers
object then sees X as read only parameters. It sees the iteration vector
Y as read write.

3.4 Smallness

We consider the small sets to be the elements of a Zermelo universe U .
For example

U =
⋃
i∈N P

i HF
HF =

⋃
i∈N P

i {}

where P is power set of and HF consists of the hereditarily �nite sets
[MEN3, MES2].

4 The PTime Doctrine

The PTime doctrine consists of small categories with chosen structure,
�nite products, 2-comprehensions respecting the �nite products, base 2
�at recursion, and base 2 safe recursion. The PTime Doctrine is ab-
stracted from the numeric arrows category Num2, which has

objects the Num arrows
arrows the Num commuting squares

4.1 2-Comprehensions

On a category C, a 2-comprehension consists of endo-functors

6

4 THE PTIME DOCTRINE 4.1 2-Comprehensions

G, T : C → C

and natural transformations

G id Tε η

such that

G2 = G GT = T
T G = G T 2 = T

Gη = Tε = η ε
εG = Gε = η G = id
η T = T η = ε T = id

Here the id are identity functors or natural transformations. We have
the functors

d0 : Num2 → Num s0 : Num→ Num2 d1 : Num2 → Num
x : X0 → X1 7→ X1 X 7→ id : X → X x : X0 → X1 7→ X0

From these we get a 2-comprehension on Num2 by

G = s0 d1 T = s0 d0

with ε, η by

X0 X0 X1

X0 X1 X1

id

id

x

x

id

x id

Again, as we noted in the introduction, this all comes from actions on
the ordinal 2.

7

4.2 Tier 0 4 THE PTIME DOCTRINE

4.2 Tier 0

We de�ne the tier 0 subcategory CT of C to be full & have

objects C objects taken by T to 1

Notice the isomorphism

Num ∼=
(
Num2

)
T

Y 7→ − : Y → 1

4.3 Flat Recursion

C has base 2 �at recursion when CT has a sum cocone

1 N N

N

z s

t

which is stable under products with C objects X in the sense that the
product endo-functor

X × _ : C → C

takes this sum cocone to a sum cocone.
(
Num2

)
T
has such a sum cocone.

Namely, modulo the isomorphism at the end of the last subsection,

z : 1→ N N← N : s N← N : t
inclusion s x = 2x+ 1 t x = 2x+ 2

The multi-stack machines in the Completeness subsection use such sum
cocones. The arrows s, t push a digit onto a stack of digits. The sum
property makes decisions based on whether a stack is empty or on what
digit it has on top. And pops that digit if it is there. Flat recursion [Lei]
as sums was observed by R Cockett [Coc].

8

4 THE PTIME DOCTRINE 4.4 Safe Recursion

4.4 Safe Recursion

CT objects Y are considered safe. While C objects X can, in general,
be unsafe. In base 2 safe recursion, the unsafe object GN clocks a safe
read write iteration object Y while having read only access to a possibly
unsafe parameters object X. C has base 2 safe recursion when for any
C object X, CT object Y , and C [X] maps

pb−X 1 pb−X Y pb−X Y

pb−X Y

f g

h

there exists unique C [X] commuting

pb−X G 1 pb−X GN pb−X GN

pb−X 1 pb−X Y pb−X Y

pb−X GN pb−X GN

pb−X Y pb−X Y

id

pb−X Gz

R R

pb−X Gs

f g

R R

pb−X Gt

h

The read only access to the possibly unsafe X allows de�ning # (smash),
the base 2 analogue of base 1 multiplication, which we sill need in the
Completeness subsection.

9

5 THE P TIME CHARACTERIZATION

5 The P Time Characterization

Let I be the initial category in the PTime doctrine. Since Num2 is in
PTime, there is a unique PTime functor

c : I → Num2

Think of the Num2 objects as arrows going down. Then the bottoms of
the commuting squares which are the Num2 arrows in the image of c are
the P Time functions.

5.1 Completeness

Completeness is that we so get all the P Time functions. The PTime
doctrine uses base 2 numbers with digits 1 & 2 so that a numeral is
just a string of 1s & 2s. Code the tapes of a multi-tape Turing machine
with these numerals. Split these tapes into pairs of stacks of the digits
1 & 2. Then we have a multi-stack machine, similar Weihrauch's stack
machines [Wei]. The I arrows include the operations of this machine. In
I, the analogue of base 1 addition is concatenation of strings of 1s & 2s.
And the analogue of base 1 multiplication is the iterated concatenation
(smash). # allows constructing big enough functions to run the multi-
stack machine, using base 2 safe recursion, for polynomial time.

5.2 Soundness

Soundness is that we so only get P Time functions. For this we use a
subcategory B, with explicit time and output bounds, of the numeric
arrows category Num2. The B objects are �nite products of

the tier 0 numbers the tier 1 numbers
− : N→ 1 id : N→ N

10

5 THE P TIME CHARACTERIZATION 5.2 Soundness

The B arrows have the form

Ni × Nj Ni′ × Nj′

Ni Ni′

πL

〈aπL, b〉

πL

a

with πL the left projection and 〈a πL, b〉 a tuple function. In particular
we have a function

Ni × Nj Nj′b

Set

|x| =
∑

k∈i |xk|

the total number of digits (1 or 2) in a numeric vector x ∈ Ni. And set

|y|∞ = maxk∈j |yk|

the maximal number of digits (1 or 2) in a numeric vector y ∈ Nj. Also
do similar with i′, j′ replacing i, j. For B arrows we require the explicit
bounds

a x runs in time ≤ pa |x|
with output bound |a x| ≤ pa |x|
b x y runs in time ≤ qb (|x|+ |y|)
with output bound |b x y|∞ ≤ rb |x|+ |y|∞

Here x ∈ Ni, y ∈ Nj and the pa, qb, rb are non-negative coe�cients
polynomials. Since the inclusion

B Num2⊆

is a PTime doctrine arrow, the unique arrow c factors as

11

6 STRUCTURES

B Num2

I

⊆

c

which shows soundness.

6 Structures

Our structures [MES1] are inspired by M Makkai's sketches [Mak], as
well as by presheaves. However for us a (theory) signature is (now) any
small graph. And our structures are sets with the signature acting on
the left. This action is best speci�ed using unique lifting as in discrete
�brations [Rie2].

6.1 Graphs

A graph Σ consists of sets

Σ0 of objects Σ1 of arrows

together with to & from functions

d0, d1 : Σ1 → Σ0

A graph arrow takes objects to objects, arrows to arrows, and preserves
to & from functions.

6.2 Unique Lifting

Fix a small graph Σ. A (left) Σ structure is a graph arrow τ : T → Σ
satisfying the following left unique lifting property (for which we write
LULP). As pictured in

12

6 STRUCTURES 6.3 Entailments

x T

A B Σ

f

τ

f

for any T object x over Σ object A (in the sense that τ0 x = A) & Σ
arrow f : A→ B, there exists a unique T arrow f with d1 f = x & over
f (in the sense that τ1 f = f). We write f · x for this LULP arrow f , as
it is uniquely determined by f, x. Notice that (by LULP) any T arrow
g has this form! Thus a Σ structure τ : T → Σ takes

Σ object A to the set τ−10 A = {x ∈ T0 | τ0 x = A}
Σ arrow f : A→ B to the function x 7→ f · x

A Σ structure arrow from Σ structure τ : T → Σ to Σ structure υ :
Υ→ Σ is a graph arrow µ : T → Υ such that

T Υ

Σ

τ

µ

υ

commutes.

6.3 Entailments

Fix a small graph Σ and a Σ structure τ . A Σ entailment is built from

Σ declarations Σ constraints
x : A px = q y

and has the form

∃! conclusion ← premise .

13

6.4 Models 6 STRUCTURES

The mode ∃! is omitted when strong and weak modeling coincide, or
when weak modeling is intended. The premise is a comma separated
�nite list of Σ declarations and Σ constraints. In a declaration

x : A

the x is a variable, which is so declared of sort A, where A is a Σ object.
This declaration is interpreted in τ as an element

x ∈ τ−10 A

In a constraint

p x = q y

the p, q are Σ paths, the x, y are variables declared in the premise, and
everything must be well-sorted. This constraint is interpreted in τ as the
required equality

p · x = q · y

Here the paths act by iterating the signature action. The conclusion is
a comma separated �nite list of additional Σ declarations and Σ con-
straints.

6.4 Models

The structure τ strongly models an entailment when any interpretation
of the premise in τ uniquely extends to an interpretation of the premise
+ conclusion in τ . The modeling is instead weak when the extension
exists, but is not necessarily unique.

14

6 STRUCTURES 6.5 Entailments for Categories

6.5 Entailments for Categories

As a 1st example, we give entailments for categories. Our signature
graph Σ is that for 2D simplicial sets:

[2]

[1]

[0]

dk

dj

sj

s0

Here j ∈ 2 = {0, 1} , k ∈ 3 = {0, 1, 2}. For a Σ structure τ , the
geometrical intention is

τ−10 [0] τ−10 [1] τ−10 [2]
objects arrows triangles

We need the simplicial entailments

% loop

d1 s0X = X, d0 s0X = X

← X : [0] .

% triangle

d1 d1 α = d1 d2 α, %X

d1 d0 α = d0 d2 α, % Y

d0 d0 α = d0 d1 α % Z

← α : [2] .

15

6.5 Entailments for Categories 6 STRUCTURES

% degenerate

d2 s1 f = f, d1 s1 f = f, d0 s1 f = s0 d0 f,

d2 s0 f = s0 d1 f, d1 s0 f = f, d0 s0 f = f

← f : [1] .

% doubly degenerate

s1 s0X = s0 s0X

← X : [0] .

For the strong models to be categories, we also need the entailments

% composition

∃!α : [2] , d2 α = f, d0 α = g,

g ◦ f ⇒ d1 α % functional sugar

← f, g : [1] , d1 f = d0 g.

% associative

(h ◦ g) ◦ f = h ◦ (g ◦ f)

← f, g, h : [1] , d0 f = d1 g, d0 g = d1 h.

Here % starts a comment line segment. And ∃! indicates strong modeling.
Also we use functional sugar [MEN4] to make the associative entailment
more readable. Dependent type sugar is also possible [MES2].

16

6 STRUCTURES 6.6 Folding

6.6 Folding

For an entailment α, both its premise and its premise + conclusion can
be closed up under the signature action to become �nitely presented
structures. Similarly α itself �nitely presents a structure arrow α between
those structures [MES1]. Then for a small structure τ [AR]

τ strongly models α when τ is orthogonal to α
τ weakly models α when τ is injective relative to α

The folding !α is (modulo �nite presentation) the codiagonal from push-
ing out α along itself. τ strongly models α when it weakly models
{α, !α}.

6.7 Initial Models

Fix a small graph Σ and a small set Ax of Σ entailments. Ax has an ini-
tial strong model I [CD3, CD2]. The Ax deductions close up Ax (modulo
�nite presentation) under folding, push out along structure arrows be-
tween �nitely presented structures, identities, and composition. Suppose
X is a Σ premise closed up (under the signature action) to be a Σ struc-
ture. Then any structure arrow X → I is represented by a fraction
[Bor1]

d : 0→ Y Y ← X : a

with the denominator d an Ax deduction, the numerator a a structure
arrow between �nitely presented structures, and 0 the initial structure.
Such fractions represent the same arrow when they can be put under
a common denominator. a is, in the sense of logic programming, an
answer.

17

7 ENTAILMENTS FOR PR

7 Entailments for PR

We summarize the additional entailments, beyond those for categories,
for the PR doctrine as in [AH1].

7.1 Finite Products

Having a terminal object translates fairly easily to entailments. We
expand our signature graph Σ to

[2]

[1]

[0] I Ĩ

dk

dj

sj

s0

− −

To the entailments for a category we add

% unique arrow !X · Y
∃! !X · Y ⇒ t : [1] , d1 t = X, d0 t = −Y

← X : [0] , Y : I.

% chosen terminal object 1

∃! 1⇒ Y : Ĩ← .

To have �nite products, we further expand our signature graph Σ to

18

7 ENTAILMENTS FOR PR 7.1 Finite Products

[2]

[1] P P̃

[0] I Ĩ

dk

dj

sj

πj −

s0

− −

And we add the entailments

% cone

d1 π0 γ = d1 π1 γ ← γ : P.

% unique tuple (a, b) · γ
∃! (a, b) · γ ⇒ f : [1] ,

d1 f = d1 a, d0 f = d1 π0 γ,

π0 α ◦ f = a, π1 α ◦ f = b

← X, Y : [0] , γ : P,

d0 π0 γ = X, d0 π1 γ = Y,

a, b : [1] , d1 a = d1 b,

d0 a = X, d0 b = Y.

% chosen product X × Y
∃!X × Y ⇒ α : P̃,

d0 π0 − γ = X, d0 π1 − γ = Y

← X, Y : [0] .

19

7.2 NNO 7 ENTAILMENTS FOR PR

7.2 NNO

Finally we add entailments for a product stable base 1 NNO. We expand,
and contract, our signature graph Σ to

[2] P P̃

[1] N Ñ

[0] I

dk πj

−

dj

sj

z, s

i

−
s0

−

So we must eliminate the chosen terminal object entailment. Instead we
will get a chosen terminal object as part of a chosen NNO. Then the base
1 stable NNO entailments are

% iteration diagram

d1 s ν = N, d0 s ν = N

← ν : N, N : [0] , d0 z ν = N.

20

8 SMASH

% unique recursor R f g · _
∃!R f g · (α, β, ν)⇒ r : [1] ,

d1 r = d1 π0 α, d0 r = Y,

r ◦ (s0X, z ν ◦ (!X · i ν)) · α = f,

r ◦ (π0 α, s ν ◦ π1 α) · α = g ◦ (π0 α, r) · β
← f, g : [1] , α, β : P, ν : N,

X, Y, N : [0] ,

d0 π0 β = X, d0 π1 β = Y, d0 z ν = N,

d0 π0 α = X, d0 π1 α = N,

d1 f = X, d0 f = Y,

d1 g = d1 π0 β, d0 g = Y.

% chosen NNO

∃!N ⇒ ν : Ñ← .

8 Smash

For the Completeness subsection, we need # (smash). We proceed with
equations in Num, with safe & unsafe typing from the tier 1 & tier 0
numbers in Num2, which can be solved using base 2 safe recursion. Here
we write 0 rather than z.

8.1 +→ ·
Base 1 addition becomes base 2 concatenation by

21

8.2 ∗ → # 9 THE B INCLUSION

y · 0 = y

y · (s n) = s (y · n)

y · (t n) = t (y · n)

y n
safe unsafe

8.2 ∗ → #

Base 1 multiplication becomes base 2 smash by

x#0 = x

x# (s n) = (x#n) · x
x# (t n) = (x#n) · x

(x#n) x
safe iteration vector unsafe parameter

8.3 ↑
Base 1 exponential is iterated multiplication in the PR doctrine. Smash
can not be iterated in the PTime doctrine because _#_ has no safe
inputs.

9 The B Inclusion

For the Soundness subsection, we need to check (which here we do in
some haste) the inclusion

22

9 THE B INCLUSION 9.1 Multi-Stack Machines

B Num2⊆

for identities, composition, �nite products, �at recursion, and safe recur-
sion. Again B arrows have the form

X × Y X ′ × Y ′

X X ′

πL

〈aπL, b〉

πL

a

X = Ni Y = Nj X ′ = Ni′ Y ′ = Nj′

and we are concerned with the time & output bounds

a x runs in time ≤ pa |x|
with output bound |a x| ≤ pa |x|
b x y runs in time ≤ qb (|x|+ |y|)
with output bound |b x y|∞ ≤ rb |x|+ |y|∞

9.1 Multi-Stack Machines

For the time bounds we will use our multi-stack machines as sketched
in the Completeness subsection. They have a �nite number of stacks of
digits. These stacks are numbered. The instruction types are

push pop halt

The instruction lines have the forms & actions

label push digit stack next
push digit on stack; go to next

label pop stack next next' next�
try to pop stack; if digit none, 1, 2 go to next, next', next�

label halt
halt

23

9.2 Identities 9 THE B INCLUSION

Time is the number of instructions executed. Notice that the a output
bound follows from its time bound. However the b output bound is
tighter than implied by its time bound.

9.2 Identities

The input stacks may need to be copied to output stacks, which takes
linear time. But the outputs are the inputs, so that the b output bound
follows.

9.3 Composition

Composition gives

a′ (a x) b′ (a x) (b x y)

Thus

|b′ (a x) (b x y)|∞ ≤ rb′ (pa |x|) + rb |x|+ |y|∞
The remaining bounds compose non-negative coe�cients polynomials.

9.4 Products

The argument for the projections is similar to that for identities. id :
{0} → {0} is the terminal object in Num2. So going to it may need
zeroing out a stack. Tuples add run times, and have fairly clear output
bounds.

9.5 Flat Recursion

Base 2 �at recursion selects an alternative. So it bounds are fairly clear.

24

9 THE B INCLUSION 9.6 Safe Recursion

9.6 Safe Recursion

This, and composition, are the main items we need to look at. We bring
back base 2 safe recursion from C [X] to C, and then, with Num2 objects
viewed as downward arrows, look at the tops of Num commuting squares.
Then base 2 safe recursion in B is that for any Num object X,

(
Num2

)
T

object Y (viewed as a Num object), and Num maps with the required
bounds

X Y X × Y

X × Y

b b′

b′′

there exists unique Num commuting

X X × N X × N

X Y X × Y

X × N X × N

Y X × Y

id

〈id, z−〉

b 〈πL, b〉

id×s

b b′

b 〈πL, b〉

id×t

b′′

whose bounds we need to check. (Stretching our bounds notation, here
X can be a tier 1, tier 0 hybrid, which we need to de�ne concatenation
& smash as in the Smash section. The arguments in b x n is another
stretch.) On a multi-stack machine, this runs as an initialization followed
by looping compositions, with the iteration vector y evolving as

b x, b?x (b x) , b?x
(
b?x (b x)

)
, · · ·

25

REFERENCES

Here ? is ′ or ′′ as needed. Thus we have the output bound∣∣b x n∣∣∞ ≤ |n|max (rb′ |x| , rb′′ |x|) + rb |x|

and thus the b x n time bound

≤ |n|max
(
qb′
(
|x|+ j

∣∣b x n∣∣∞) , qb′′ (|x|+ j
∣∣b x n∣∣∞))+ qb |x|

Here j is the length of the iteration vector y.

10 Research Gate

Many of my writings are at

https://www.researchgate.net/pro�le/Jim-Otto

References

[AH1] Jim Otto, Entailments for FP Categories with Stable NNO : AH1,

2021.

[AR] Ji°í Adámek & Ji°í Rosický, Locally Presentable and Accessible

Categories, Cambridge, 1994.

[BC2] S Bellantoni & S Cook, A new recursion-theoretic characteriza-

tion of the polytime functions, in STOC Proceedings, ACM, 1992.

[Bel] S Bellantoni, Predicative Recursion and Computational Complex-

ity, Thesis, University of Toronto, 1992.

[Bor1] Francis Borceux, Handbook of Categorical Algebra, Volume 1,

Cambridge, 1994.

26

REFERENCES REFERENCES

[CD1] James R Otto Jr, Complexity Doctrines, Thesis, McGill Univer-
sity, 1995.

[CD2] J Otto, From Horn formula to Makkai sketch resolution, 1996.

[CD3] J R Otto, Update to Complexity Doctrines, 1998.

[Cob] A Cobham, The intrinsic computational di�culty of functions,
in Y Bar Hillel, Proceedings of the 1964 International Congress

of Logic, Methodology, and the Philosophy of Science, North Hol-
land, 1965.

[Coc] R Cockett, Conversation.

[DB1] Joaquín Díaz Boils, Categorical Comprehensions and Recursion,

Journal of Logic and Computation, 2015.

[Joh2] Peter T Johnstone, Sketches of an Elephant, Volumes 1�2, Ox-
ford, 2002.

[KR] A Kock & G E Reyes, Doctrines in Categorical Logic, in Jon
Barwise, Handbook of Mathematical Logic, North Holland, 1977.

[Lei] D Leivant, Rami�ed recurrence and computational complexity I,
in P Clote & J Remmel, Feasible Mathematics II, Birkhäuser,
1994.

[LS] J Lambek and P J Scott, Introduction to higher order categorical

logic, Cambridge, 1986.

[Mak] M Makkai, Generalized sketches as a framework for completeness
theorems, Preprint, 1994.

[MEN2] Jim Otto, Classical 1st Order Logic: ME Notes 2, 2021.

[MEN3] Jim Otto, MacLane Universes: ME Notes 3, 2021.

27

REFERENCES REFERENCES

[MEN4] Jim Otto, Categories & Path Rewriting: ME Notes 4, 2021.

[MES1] Jim Otto, Deconstructing Structures: ME Studies 1, 2022.

[MES2] Jim Otto, HF Sets & the Ackermann Relation: ME Studies 2,
2022.

[Pav] Du²ko Pavlovi¢, Predicates and Fibrations, Thesis, Rijksuniver-
siteit Utrecht, 1990.

[Rie2] Emily Riehl, Category Theory in Context, Dover, 2016.

[Rit] R Ritchie, Classes of predictably computable functions, Transac-
tions of the AMS, 1963.

[Rom] L Román, Cartesian Categories with Natural Numbers Object,

Journal of Pure and Applied Algebra, 1989.

[Wei] Klaus Weihrauch, Computability, Springer, 1987.

28

