P Time, A Bounded Arrows Category, & Entailments (NYC CTS Talk)

Jim Otto, 3/29/23 (10:00 pm)

1 Introduction

In revisiting the P Time functions characterization from my thesis [CD1], the Bill Lawvere words

Doctrine Comprehension

are key.

1.1 Doctrines

Our doctrines are roughly as in Kock & Reyes [KR]. While we may eventually wish them to be higher dimensional, for now they are 1dimensional categories whose objects are small categories with chosen structure. Further they are either [AR]

> locally finitely presentable or locally finitely multi-presentable

Here we consider doctrines for

PR	primitive recursion
PTime	P Time functions
ZC~	toposes with numbers, choice, & precisely 2 truth values

The 1st 2 are locally finitely presentable, and thus have initial categories. The 3rd is likely only locally finitely multi-presentable, lacks an initial category, but instead has an initial family of categories. Keep in mind that the locally finitely presentable category of small commutative rings has the initial ring

\mathbb{Z}

while the locally finitely multi-presentable category of small fields has the initial family of fields

 $\{\mathbb{Q}, \cdots \mathbb{Z}_p, \cdots\}$

Locally finitely presentable categories can be specified using strong models of small sets of entailments, while locally finitely multi-presentable categories can be specified using strong models of small sets of multientailments [MES1]. For a locally finitely presentable category, this specification by entailments allows its initial object to be constructed using answer over deduction fractions [CD3, CD2]. Here our entailments present finitely presentable arrows between our structures. While our structures are sets with a small graph acting on the left. They are inspired by Makkai's sketches [Mak], as well as by presheaves. Our multientailments are (modulo presentation) finite discrete base cones of our entailments, with a leg for each alternative. Strong models of small sets of multi-entailments are enough to capture classical multi-sorted 1st order logic [MEN2, Joh2]. Here strong modeling is by cone orthogonality [AR].

1.2 Comprehensions

Joaquín Díaz Boils [DB1] emphasizes the use of comprehensions in cutting recursion down to complexity. I learned of comprehensions from Duško Pavlović [Pav]. I use 2-comprehensions in passing from PR to PTime. They come from thinking of the ordinal 2 as a category, and then looking at its endo-functors and the natural transformations between them. 3- & V- comprehensions also appear in my thesis [CD1].

2 Genealogy

Our P Time functions characterization has the genealogy

A Cobham (65)	L Román (89)
Bellantoni & Cook (92)	Me (95)

L Román [Rom] used the PR doctrine to characterize the primitive recursive functions. A Cobham [Cob] used explicitly bounded recursion to cut down primitive recursion to the P Time functions. Bellantoni & Cook [BC2] used 2 tiers of numbers to magically make the Cobham bounds become implicit! I abstracted from a numeric arrows category to modify the PR doctrine to the PTime doctrine, which I used to characterize the P Time functions. This numeric arrows category has the tier 0 & tier 1 numbers

 $-: \mathbb{N} \to 1 \mid \mathrm{id}: \mathbb{N} \to \mathbb{N}$

Here \mathbb{N} is the set $\{0, 1, 2, \dots\}$ of natural numbers, 1 is the singleton set $\{0\}$, and id is the identity function.

3 The Primitive Recursion Characterization

The PR doctrine consists of small categories with chosen structure, finite products, and product stable natural numbers objects. Entailments for

this doctrine are in [AH1]. Let Num be the category with

objects	the finite products of $\mathbb N$	
arrows	the functions between these objects	

Let I be the initial category in PR. Since Num is in PR, there is a unique PR functor

$$c: I \to \mathsf{Num}$$

L Román showed that the primitive recursive functions are precisely those functions in the image of this functor c.

3.1 Base 1

A base 1 natural numbers object in a category C, with terminal object 1, is an initial object

$$1 \xrightarrow{z} N \xleftarrow{s} N$$

in the category with objects the C objects & arrows

$$1 \xrightarrow{f} Y \xleftarrow{g} Y$$

and arrows the C commuting squares

$$1 \xrightarrow{f} Y \xleftarrow{g} Y$$

$$\downarrow \qquad \qquad \downarrow^{r} \qquad \qquad \downarrow^{r}$$

$$1 \xrightarrow{h} Z \xleftarrow{k} Z$$

The PR doctrine is abstracted from the numeric category Num. In particular, there we can choose $1 = \{0\}$ and then have the base 1 natural numbers object

$z: 1 \to \mathbb{N}$	$\mathbb{N} \leftarrow \mathbb{N} : s$
inclusion	s x = x + 1

3.2 Base 2

For (dyadic) base 2, rather than base 1, replace the initial C iteration diagram

$$1 \xrightarrow{z} N \xleftarrow{s} N$$

with the initial C iterations diagram

In Num we have such a base 2 natural numbers object by

$z: 1 \to \mathbb{N}$	$\mathbb{N} \leftarrow \mathbb{N} : s$	$\mathbb{N} \leftarrow \mathbb{N} : t$
inclusion	s x = 2x + 1	t x = 2x + 2

This is dyadic, rather than binary, since it uses digits 1 & 2 rather than 0 & 1. This avoids leading zero issues. For primitive recursion, it doesn't matter whether we use base 1 or base 2. To get the P Time functions we do need to use base 2. If we instead used base 1, we would end up with the Linear Space (in the sense of computational complexity!) functions [Bel, Rit, CD1].

3.3 Product Stability

For a category C with object X, we use the polynomial category C[X][LS] to specify product stability. It is the full category in the slice category C/X of the left projections

$$\pi_{\mathcal{L}}: X \times Y \to X$$

We have the functor

$\operatorname{pb}_{-X}: C \to C\left[X\right]$	
$Y \mapsto \text{pull back } Y \to 1 \text{ along } X \to 1$	

A C natural numbers object is stable under products with X when pb_{-X} takes it to a C[X] natural numbers object. This last natural numbers object then sees X as read only parameters. It sees the iteration vector Y as read write.

3.4 Smallness

We consider the small sets to be the elements of a Zermelo universe U. For example

$U = \bigcup_{i \in \mathbb{N}} P^i \operatorname{HF}$
$\operatorname{HF} = \bigcup_{i \in \mathbb{N}} P^i \left\{ \right\}$

where P is power set of and HF consists of the hereditarily finite sets [MEN3, MES2].

4 The PTime Doctrine

The PTime doctrine consists of small categories with chosen structure, finite products, 2-comprehensions respecting the finite products, base 2 flat recursion, and base 2 safe recursion. The PTime Doctrine is abstracted from the numeric arrows category Num^2 , which has

objects	the Num arrows
arrows	the Num commuting squares

4.1 2-Comprehensions

On a category C, a 2-comprehension consists of endo-functors

 $G, T: C \to C$

and natural transformations

$$G \xrightarrow{\epsilon} \operatorname{id} \xrightarrow{\eta} T$$

such that

$$\begin{array}{|c|c|c|c|}\hline G^2 = G & GT = T \\ \hline T G = G & T^2 = T \\ \hline \end{array}$$

$G \eta = T \epsilon = \eta \epsilon$
$\epsilon G = G \epsilon = \eta G = \mathrm{id}$
$\eta T = T \eta = \epsilon T = \mathrm{id}$

Here the id are identity functors or natural transformations. We have the functors

$d_0: Num^2 \to Num$	$s_0: Num \to Num^2$	$d_1: Num^2 o Num$
$x: X_0 \to X_1 \mapsto X_1$	$X \mapsto \mathrm{id} : X \to X$	$x: X_0 \to X_1 \mapsto X_0$

From these we get a 2-comprehension on Num^2 by

$$G = s_0 d_1 \mid T = s_0 d_0$$

with ϵ , η by

$$\begin{array}{cccc} X_0 & \stackrel{\mathrm{id}}{\longrightarrow} & X_0 & \xrightarrow{x} & X_1 \\ & & \downarrow^{\mathrm{id}} & & \downarrow^x & & \downarrow^{\mathrm{id}} \\ & X_0 & \xrightarrow{x} & X_1 & \xrightarrow{\mathrm{id}} & X_1 \end{array}$$

Again, as we noted in the introduction, this all comes from actions on the ordinal 2.

4.2 Tier 0

We define the tier 0 subcategory C_T of C to be full & have

```
objects | C objects taken by T to 1
```

Notice the isomorphism

$$\frac{\mathsf{Num} \cong \left(\mathsf{Num}^2\right)_T}{Y \mapsto -: Y \to 1}$$

4.3 Flat Recursion

C has base 2 flat recursion when C_T has a sum cocone

which is stable under products with C objects X in the sense that the product endo-functor

$$X \times _: C \to C$$

takes this sum cocone to a sum cocone. $(Num^2)_T$ has such a sum cocone. Namely, modulo the isomorphism at the end of the last subsection,

$z:1\to\mathbb{N}$	$\mathbb{N} \leftarrow \mathbb{N} : s$	$\mathbb{N} \leftarrow \mathbb{N} : t$
inclusion	s x = 2x + 1	t x = 2x + 2

The multi-stack machines in the Completeness subsection use such sum cocones. The arrows s, t push a digit onto a stack of digits. The sum property makes decisions based on whether a stack is empty or on what digit it has on top. And pops that digit if it is there. Flat recursion [Lei] as sums was observed by R Cockett [Coc].

4.4 Safe Recursion

 C_T objects Y are considered safe. While C objects X can, in general, be unsafe. In base 2 safe recursion, the unsafe object GN clocks a safe read write iteration object Y while having read only access to a possibly unsafe parameters object X. C has base 2 safe recursion when for any C object X, C_T object Y, and C[X] maps

$$pb_{-X} 1 \xrightarrow{f} pb_{-X} Y \xleftarrow{g} pb_{-X} Y$$

$$\uparrow^{h} pb_{-X} Y$$

there exists unique C[X] commuting

$$pb_{-X} G \xrightarrow{pb_{-X} G z} pb_{-X} G \xrightarrow{pb_{-X} G z} pb_{-X} G \xrightarrow{pb_{-X} G z} pb_{-X} G \xrightarrow{N}$$

$$id \qquad \qquad \downarrow R \qquad \qquad \downarrow R \qquad \qquad \downarrow R$$

$$pb_{-X} 1 \xrightarrow{f} pb_{-X} Y \xleftarrow{g} pb_{-X} Y$$

$$pb_{-X} G \xrightarrow{pb_{-X} G z} pb_{-X} G \xrightarrow{N}$$

$$\downarrow R \qquad \qquad \downarrow R \qquad \qquad \downarrow R$$

$$pb_{-X} Y \xleftarrow{h} pb_{-X} Y$$

The read only access to the possibly unsafe X allows defining # (smash), the base 2 analogue of base 1 multiplication, which we sill need in the Completeness subsection.

5 The P Time Characterization

Let I be the initial category in the PTime doctrine. Since Num^2 is in PTime, there is a unique PTime functor

 $c: I \to \mathsf{Num}^2$

Think of the Num^2 objects as arrows going down. Then the bottoms of the commuting squares which are the Num^2 arrows in the image of c are the P Time functions.

5.1 Completeness

Completeness is that we so get all the P Time functions. The PTime doctrine uses base 2 numbers with digits 1 & 2 so that a numeral is just a string of 1s & 2s. Code the tapes of a multi-tape Turing machine with these numerals. Split these tapes into pairs of stacks of the digits 1 & 2. Then we have a multi-stack machine, similar Weihrauch's stack machines [Wei]. The I arrows include the operations of this machine. In I, the analogue of base 1 addition is concatenation of strings of 1s & 2s. And the analogue of base 1 multiplication is the iterated concatenation # (smash). # allows constructing big enough functions to run the multi-stack machine, using base 2 safe recursion, for polynomial time.

5.2 Soundness

Soundness is that we so only get P Time functions. For this we use a subcategory B, with explicit time and output bounds, of the numeric arrows category Num². The B objects are finite products of

the tier 0 numbers	the tier 1 numbers
$-: \mathbb{N} \to 1$	$\mathrm{id}:\mathbb{N}\to\mathbb{N}$

The B arrows have the form

with $\pi_{\rm L}$ the left projection and $\langle a \pi_L, b \rangle$ a tuple function. In particular we have a function

$$\mathbb{N}^i \times \mathbb{N}^j \xrightarrow{b} \mathbb{N}^{j'}$$

Set

$$|x| = \sum_{k \in i} |x_k|$$

the total number of digits (1 or 2) in a numeric vector $x \in \mathbb{N}^i$. And set

 $\left[\left. \left| y \right|_{\infty} = \max_{k \in j} \left| y_k \right| \right. \right]$

the maximal number of digits (1 or 2) in a numeric vector $y \in \mathbb{N}^{j}$. Also do similar with i', j' replacing i, j. For B arrows we require the explicit bounds

a x runs in time	$\leq p_a x $
with output bound	$ ax \le p_a x $
b x y runs in time	$\leq q_b \left(x + y \right)$
with output bound	$ b x y _{\infty} \le r_b x + y _{\infty}$

Here $x \in \mathbb{N}^i$, $y \in \mathbb{N}^j$ and the p_a , q_b , r_b are non-negative coefficients polynomials. Since the inclusion

$$B \xrightarrow{\subseteq} \mathsf{Num}^2$$

is a PTime doctrine arrow, the unique arrow c factors as

which shows soundness.

6 Structures

Our structures [MES1] are inspired by M Makkai's sketches [Mak], as well as by presheaves. However for us a (theory) signature is (now) any small graph. And our structures are sets with the signature acting on the left. This action is best specified using unique lifting as in discrete fibrations [Rie2].

6.1 Graphs

A graph Σ consists of sets

 Σ_0 of objects Σ_1 of arrows

together with to & from functions

 $d_0, d_1: \Sigma_1 \to \Sigma_0$

A graph arrow takes objects to objects, arrows to arrows, and preserves to & from functions.

6.2 Unique Lifting

Fix a small graph Σ . A (left) Σ structure is a graph arrow $\tau : T \to \Sigma$ satisfying the following left unique lifting property (for which we write LULP). As pictured in

for any T object x over Σ object A (in the sense that $\tau_0 x = A$) & Σ arrow $f: A \to B$, there exists a unique T arrow \overline{f} with $d_1 \overline{f} = x$ & over f (in the sense that $\tau_1 \overline{f} = f$). We write $f \cdot x$ for this LULP arrow \overline{f} , as it is uniquely determined by f, x. Notice that (by LULP) any T arrow g has this form! Thus a Σ structure $\tau: T \to \Sigma$ takes

Σ object A	to the set $\tau_0^{-1}A = \{x \in T_0 \mid \tau_0 x = A\}$
$\Sigma \operatorname{arrow} f : A \to B$	to the function $x \mapsto f \cdot x$

A Σ structure arrow from Σ structure $\tau : T \to \Sigma$ to Σ structure $v : \Upsilon \to \Sigma$ is a graph arrow $\mu : T \to \Upsilon$ such that

commutes.

6.3 Entailments

Fix a small graph Σ and a Σ structure τ . A Σ entailment is built from

Σ declarations	Σ constraints
x:A	p x = q y

and has the form

 $\exists ! \text{ conclusion} \leftarrow \text{premise}$.

The mode $\exists !$ is omitted when strong and weak modeling coincide, or when weak modeling is intended. The premise is a comma separated finite list of Σ declarations and Σ constraints. In a declaration

the x is a variable, which is so declared of sort A, where A is a Σ object. This declaration is interpreted in τ as an element

$$\overline{x} \in \tau_0^{-1} A$$

In a constraint

$$p x = q y$$

the p, q are Σ paths, the x, y are variables declared in the premise, and everything must be well-sorted. This constraint is interpreted in τ as the required equality

$$p \cdot \overline{x} = q \cdot \overline{y}$$

Here the paths act by iterating the signature action. The conclusion is a comma separated finite list of additional Σ declarations and Σ constraints.

6.4 Models

The structure τ strongly models an entailment when any interpretation of the premise in τ uniquely extends to an interpretation of the premise + conclusion in τ . The modeling is instead weak when the extension exists, but is not necessarily unique.

6.5 Entailments for Categories

As a 1st example, we give entailments for categories. Our signature graph Σ is that for 2D simplicial sets:

Here $j \in 2 = \{0, 1\}, k \in 3 = \{0, 1, 2\}$. For a Σ structure τ , the geometrical intention is

$ au_{0}^{-1}[0]$	$ au_{0}^{-1}[1]$	$ au_{0}^{-1}[2]$
objects	arrows	triangles

We need the simplicial entailments

$$\% \text{ loop}$$

$$d_1 s_0 X = X, \ d_0 s_0 X = X$$

$$\leftarrow X : [0].$$

$$\% \text{ triangle}$$

$$d_1 d_1 \alpha = d_1 d_2 \alpha, \ \% X$$

$$d_1 d_0 \alpha = d_0 d_2 \alpha, \ \% Y$$

$$d_0 d_0 \alpha = d_0 d_1 \alpha \ \% Z$$

$$\leftarrow \alpha : [2].$$

$$\% \text{ degenerate} \\ d_2 \, s_1 \, f = f, \ d_1 \, s_1 \, f = f, \ d_0 \, s_1 \, f = s_0 \, d_0 \, f, \\ d_2 \, s_0 \, f = s_0 \, d_1 \, f, \ d_1 \, s_0 \, f = f, \ d_0 \, s_0 \, f = f \\ \leftarrow f : [1] \, .$$

% doubly degenerate

$$s_1 s_0 X = s_0 s_0 X$$

 $\leftarrow X : [0].$

For the strong models to be categories, we also need the entailments

% composition $\exists! \alpha : [2], \ d_2 \alpha = f, \ d_0 \alpha = g, \\ g \circ f \Rightarrow d_1 \alpha \ \% \text{ functional sugar} \\ \leftarrow f, \ g : [1], \ d_1 f = d_0 g.$

% associative

$$(h \circ g) \circ f = h \circ (g \circ f)$$

 $\leftarrow f, g, h : [1], d_0 f = d_1 g, d_0 g = d_1 h.$

Here % starts a comment line segment. And $\exists!$ indicates strong modeling. Also we use functional sugar [MEN4] to make the associative entailment more readable. Dependent type sugar is also possible [MES2].

6.6 Folding

For an entailment α , both its premise and its premise + conclusion can be closed up under the signature action to become finitely presented structures. Similarly α itself finitely presents a structure arrow $\overline{\alpha}$ between those structures [MES1]. Then for a small structure τ [AR]

τ strongly models α	when $ au$ is orthogonal to $\overline{\alpha}$
$ au$ weakly models α	when $ au$ is injective relative to $\overline{\alpha}$

The folding $!\alpha$ is (modulo finite presentation) the codiagonal from pushing out α along itself. τ strongly models α when it weakly models $\{\alpha, !\alpha\}$.

6.7 Initial Models

Fix a small graph Σ and a small set Ax of Σ entailments. Ax has an initial strong model I [CD3, CD2]. The Ax deductions close up Ax (modulo finite presentation) under folding, push out along structure arrows between finitely presented structures, identities, and composition. Suppose \overline{X} is a Σ premise closed up (under the signature action) to be a Σ structure. Then any structure arrow $\overline{X} \to I$ is represented by a fraction [Bor1]

$$d: 0 \to \overline{Y} \mid \overline{Y} \leftarrow \overline{X}: a$$

with the denominator d an Ax deduction, the numerator a a structure arrow between finitely presented structures, and 0 the initial structure. Such fractions represent the same arrow when they can be put under a common denominator. a is, in the sense of logic programming, an answer.

7 Entailments for PR

We summarize the additional entailments, beyond those for categories, for the PR doctrine as in [AH1].

7.1 Finite Products

Having a terminal object translates fairly easily to entailments. We expand our signature graph Σ to

To the entailments for a category we add

% unique arrow
$$!X \cdot Y$$

 $\exists ! ! X \cdot Y \Rightarrow t : [1], d_1 t = X, d_0 t = -Y$
 $\leftarrow X : [0], Y : I.$
% chosen terminal object 1
 $\exists ! 1 \Rightarrow Y : \widetilde{I} \leftarrow .$

To have finite products, we further expand our signature graph Σ to

And we add the entailments

$$\% \text{ cone}$$
$$d_1 \pi_0 \gamma = d_1 \pi_1 \gamma \leftarrow \gamma : \mathbf{P}.$$

% unique tuple
$$(a, b) \cdot \gamma$$

 $\exists ! (a, b) \cdot \gamma \Rightarrow f : [1],$
 $d_1 f = d_1 a, d_0 f = d_1 \pi_0 \gamma,$
 $\pi_0 \alpha \circ f = a, \pi_1 \alpha \circ f = b$
 $\leftarrow X, Y : [0], \gamma : P,$
 $d_0 \pi_0 \gamma = X, d_0 \pi_1 \gamma = Y,$
 $a, b : [1], d_1 a = d_1 b,$
 $d_0 a = X, d_0 b = Y.$
% chosen product $X \times Y$
 $\exists ! X \times Y \Rightarrow \alpha : \tilde{P},$
 $d_0 \pi_0 - \gamma = X, d_0 \pi_1 - \gamma = Y$
 $\leftarrow X, Y : [0].$

7.2 NNO

Finally we add entailments for a product stable base 1 NNO. We expand, and contract, our signature graph Σ to

So we must eliminate the chosen terminal object entailment. Instead we will get a chosen terminal object as part of a chosen NNO. Then the base 1 stable NNO entailments are

% iteration diagram $d_1 s \nu = N, \ d_0 s \nu = N$ $\leftarrow \nu : N, \ N : [0], \ d_0 z \nu = N.$

$$\% \text{ unique recursor } \mathcal{R} f g \cdot _ \\ \exists ! \mathcal{R} f g \cdot (\alpha, \beta, \nu) \Rightarrow r : [1], \\ d_1 r = d_1 \pi_0 \alpha, d_0 r = Y, \\ r \circ (s_0 X, z \nu \circ (!X \cdot i \nu)) \cdot \alpha = f, \\ r \circ (\pi_0 \alpha, s \nu \circ \pi_1 \alpha) \cdot \alpha = g \circ (\pi_0 \alpha, r) \cdot \beta \\ \leftarrow f, g : [1], \alpha, \beta : P, \nu : N, \\ X, Y, N : [0], \\ d_0 \pi_0 \beta = X, d_0 \pi_1 \beta = Y, d_0 z \nu = N, \\ d_0 \pi_0 \alpha = X, d_0 \pi_1 \alpha = N, \\ d_1 f = X, d_0 f = Y, \\ d_1 g = d_1 \pi_0 \beta, d_0 g = Y.$$

% chosen NNO $\exists ! \mathcal{N} \Rightarrow \nu : \widetilde{N} \leftarrow .$

8 Smash

For the Completeness subsection, we need # (smash). We proceed with equations in Num, with safe & unsafe typing from the tier 1 & tier 0 numbers in Num², which can be solved using base 2 safe recursion. Here we write 0 rather than z.

8.1 $+ \rightarrow \cdot$

Base 1 addition becomes base 2 concatenation by

$$y \cdot 0 = y$$
$$y \cdot (s n) = s (y \cdot n)$$
$$y \cdot (t n) = t (y \cdot n)$$

y	n
safe	unsafe

8.2 $* \rightarrow \#$

Base 1 multiplication becomes base 2 smash by

$$x\#0 = x$$
$$x\#(s n) = (x\#n) \cdot x$$
$$x\#(t n) = (x\#n) \cdot x$$

(x # n)	x
safe iteration vector	unsafe parameter

8.3 ↑

Base 1 exponential is iterated multiplication in the PR doctrine. Smash can not be iterated in the PTime doctrine because $_#_$ has no safe inputs.

9 The *B* Inclusion

For the Soundness subsection, we need to check (which here we do in some haste) the inclusion

$$B \xrightarrow{\subseteq} \mathsf{Num}^2$$

for identities, composition, finite products, flat recursion, and safe recursion. Again B arrows have the form

and we are concerned with the time & output bounds

a x runs in time	$\leq p_a x $
with output bound	$ ax \le p_a x $
b x y runs in time	$\leq q_b \left(x + y \right)$
with output bound	$ b x y _{\infty} \le r_b x + y _{\infty}$

9.1 Multi-Stack Machines

For the time bounds we will use our multi-stack machines as sketched in the Completeness subsection. They have a finite number of stacks of digits. These stacks are numbered. The instruction types are

push pop halt

The instruction lines have the forms & actions

label push digit stack next	
push digit on stack; go to next	
label pop stack next next' next'	
try to pop stack; if digit none, 1, 2 go to next, next', next"	
label halt	
halt	

Time is the number of instructions executed. Notice that the a output bound follows from its time bound. However the b output bound is tighter than implied by its time bound.

9.2 Identities

The input stacks may need to be copied to output stacks, which takes linear time. But the outputs are the inputs, so that the b output bound follows.

9.3 Composition

Composition gives

$$\boxed{a'(a x) \mid b'(a x)(b x y)}$$

Thus

$$|b'(a x) (b x y)|_{\infty} \le r_{b'}(p_a |x|) + r_b |x| + |y|_{\infty}$$

The remaining bounds compose non-negative coefficients polynomials.

9.4 Products

The argument for the projections is similar to that for identities. id : $\{0\} \rightarrow \{0\}$ is the terminal object in Num². So going to it may need zeroing out a stack. Tuples add run times, and have fairly clear output bounds.

9.5 Flat Recursion

Base 2 flat recursion selects an alternative. So it bounds are fairly clear.

9.6 Safe Recursion

This, and composition, are the main items we need to look at. We bring back base 2 safe recursion from C[X] to C, and then, with Num^2 objects viewed as downward arrows, look at the tops of Num commuting squares. Then base 2 safe recursion in B is that for any Num object X, $(\operatorname{Num}^2)_T$ object Y (viewed as a Num object), and Num maps with the required bounds

$$\begin{array}{cccc} X & \stackrel{b}{\longrightarrow} Y & \stackrel{b'}{\longleftarrow} X \times Y \\ & \uparrow^{b''} \\ & X \times Y \end{array}$$

there exists unique Num commuting

whose bounds we need to check. (Stretching our bounds notation, here X can be a tier 1, tier 0 hybrid, which we need to define concatenation & smash as in the Smash section. The arguments in $\overline{b} x n$ is another stretch.) On a multi-stack machine, this runs as an initialization followed by looping compositions, with the iteration vector y evolving as

$$bx, b^{?}x(bx), b^{?}x(b^{?}x(bx)), \cdots$$

Here ? is ' or " as needed. Thus we have the output bound

 $\left| \overline{b} x n \right|_{\infty} \le |n| \max \left(r_{b'} |x|, r_{b''} |x| \right) + r_b |x|$

and thus the $\overline{b} x n$ time bound

$$\leq |n| \max \left(q_{b'} \left(|x| + j \left| \overline{b} x n \right|_{\infty} \right), \ q_{b''} \left(|x| + j \left| \overline{b} x n \right|_{\infty} \right) \right) + q_b |x|$$

Here j is the length of the iteration vector y.

10 Research Gate

Many of my writings are at

https://www.researchgate.net/profile/Jim-Otto

References

- [AH1] Jim Otto, Entailments for FP Categories with Stable NNO : AH1, 2021.
- [AR] Jiří Adámek & Jiří Rosický, Locally Presentable and Accessible Categories, Cambridge, 1994.
- [BC2] S Bellantoni & S Cook, A new recursion-theoretic characterization of the polytime functions, in STOC Proceedings, ACM, 1992.
- [Bel] S Bellantoni, Predicative Recursion and Computational Complexity, Thesis, University of Toronto, 1992.
- [Bor1] Francis Borceux, Handbook of Categorical Algebra, Volume 1, Cambridge, 1994.

- [CD1] James R Otto Jr, Complexity Doctrines, Thesis, McGill University, 1995.
- [CD2] J Otto, From Horn formula to Makkai sketch resolution, 1996.
- [CD3] J R Otto, Update to Complexity Doctrines, 1998.
- [Cob] A Cobham, The intrinsic computational difficulty of functions, in Y Bar Hillel, Proceedings of the 1964 International Congress of Logic, Methodology, and the Philosophy of Science, North Holland, 1965.
- Coc R Cockett, Conversation.
- [DB1] Joaquín Díaz Boils, Categorical Comprehensions and Recursion, Journal of Logic and Computation, 2015.
- [Joh2] Peter T Johnstone, Sketches of an Elephant, Volumes 1–2, Oxford, 2002.
- [KR] A Kock & G E Reyes, *Doctrines in Categorical Logic*, in Jon Barwise, *Handbook of Mathematical Logic*, North Holland, 1977.
- [Lei] D Leivant, Ramified recurrence and computational complexity I, in P Clote & J Remmel, Feasible Mathematics II, Birkhäuser, 1994.
- [LS] J Lambek and P J Scott, Introduction to higher order categorical logic, Cambridge, 1986.
- [Mak] M Makkai, Generalized sketches as a framework for completeness theorems, Preprint, 1994.
- [MEN2] Jim Otto, Classical 1st Order Logic: ME Notes 2, 2021.
- [MEN3] Jim Otto, MacLane Universes: ME Notes 3, 2021.

- [MEN4] Jim Otto, Categories & Path Rewriting: ME Notes 4, 2021.
- [MES1] Jim Otto, Deconstructing Structures: ME Studies 1, 2022.
- [MES2] Jim Otto, HF Sets & the Ackermann Relation: ME Studies 2, 2022.
- [Pav] Duško Pavlović, *Predicates and Fibrations*, Thesis, Rijksuniversiteit Utrecht, 1990.
- [Rie2] Emily Riehl, Category Theory in Context, Dover, 2016.
- [Rit] R Ritchie, Classes of predictably computable functions, Transactions of the AMS, 1963.
- [Rom] L Román, Cartesian Categories with Natural Numbers Object, Journal of Pure and Applied Algebra, 1989.
- [Wei] Klaus Weihrauch, Computability, Springer, 1987.