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Classical connections between logic, algebra and topology

I Boolean algebras

I Heyting algebras

I Cylindric algebras

I Categorical doctrines

I Cartesian closed categories and λ-calculus

I Autonomous categories and linear logic

Topos theoretic connections:

I Frames and locales

I Elementary toposes and intuitionistic set theory

I Grothendieck toposes and geometric logic

I Realisability toposes



Axiomatic Homotopy Theory

J.H.C. Whitehead (1950):
The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Traditional axiomatic systems in homotopy theory:

I Triangulated categories [Verdier 1963];

I Homotopical algebra [Quillen 1967];

I Derivators [Grothendieck 1984]

New axiomatic systems:

I Higher toposes [Rezk, Lurie, ....];

I Homotopy type theory [Voevodsky, Awodey & Warren,....];

I Cubical type theory [Coquand & collaborators].



Voevodsky’s Univalent Foundation Program

Voevodsky’s univalence principle is to type theory what the
induction principle is to Peano arithmetic.

A univalent type theory (UTT) is obtained by adding the
univalence principle to Martin-Löf type theory (MLTT).

The goal of Voevodsky’s Univalent Foundation Program is to

I give constructive mathematics a new foundation;

I apply type theory to homotopy theory;

I develop proof assistants based in UTT.

But many basic questions remain to be solved.



Goals of my talk

To describe the connection between type theory, category theory
and topology by using the notion of tribe.

Theorem
(Gambino & Garner, Shulman) The syntaxic category of type
theory is a tribe.

The notion of tribe is a gateway to type theory:

We may work backward

Tribe ⇒ Type Theory

EVERY MATHEMATICIAN IS USING TYPE THEORY
WITHOUT BEING AWARE OF IT



Overview

1. What is a tribe?

2. What is type theory ?

3. What is univalence?

4. What is descent?

5. What is an elementary higher topos ?

6. Applications



Carrable maps

Recall that a map p : X → B in a category C is said to be
carrable if the fiber product of p with any map f : A→ B exists,

A×B X

π1

��

π2 // X

p

��
A

f // B

The projection π1 is called the base change of p along f .



The notion of clan

Definition
A clan is a category C with terminal object 1 and equipped with a
class F of carrable maps called fibrations satisfying the following
conditions:

I every isomorphism is a fibration;

I the composite of two fibrations is a fibration;

I the base change of a fibration along any map is a fibration;

I the unique map X → 1 is a fibration for every object X ∈ C.

Definition
A homomorphism of clans F : C → C′ is a functor which
preserves

I fibrations and base changes of fibrations;

I terminal objects.



Anodyne maps

Definition
A map u : A→ B in a clan C is said to be is anodyne if it has the
left lifting property with respect to every fibration f : X � Y .

This means that every commutative square

A

anodyne u
��

a // X

f fibration����
B

b // Y

has a diagonal filler d : B → X (du = a and fd = b).

A

u
��

a // X

f����
B

d
>>

b // Y



Definition
A clan E is a tribe if

I the base change of an anodyne map along a fibration is
anodyne;

I every map f : A→ B admits a factorization f = pu with u
anodyne and p a fibration:

E
p

    
A

u
??

f // B.

Definition
A homomorphism of tribes F : E → E ′ is a homomorphism of
clans which takes anodyne maps to anodyne maps.



The tribe of Kan complexes

A map of simplicial sets f : X → Y is said to be a Kan fibration
if every commutative square

Λk [n]

��

h // X

f ⇒
��

∆[n]
y // Y

has a diagonal filler h′ : ∆[n]→ Y .

A simplicial set X is said to be a Kan complex if the map X → 1
is a Kan fibration.



The tribe of Kan complexes

Theorem
The category of Kan complexes Kan has the structure of a tribe,
where a fibration is a Kan fibration.

Remark: a map between Kan complexes u : A→ B is anodyne iff
it is a strong deformation retract.



Types and elements

Let E be a tribe.

We shall say that an object A ∈ E is a type and write

` A : Type

We shall say that a map a : 1→ A in E is an element of type A
and write

` a : A

Remark: an element a : A is often called a term of type A.



Elementary extension of a tribe

Let E be a tribe.

Then for every object A ∈ E we have a new tribe E(A).

By construction, E(A) is the full subcategory of E/A whose objects
are fibrations p : X � A.

A map f : (X , p)→ (Y , q) in E(A) is a fibration if the map
f : X → Y is a fibration in E .

X

p �� ��

f // // Y

q����
A



A fibration is a family of objects.

If p : E → A is a fibration, then the object (E , p) of the tribe E(A)
is called a dependant type in context A.

A type theorist will write

x : A ` E (x) : Type (1)

where E (x) denotes the fiber of p : E → A at a variable element
x : A.

E (x)

��

// E

p
����

1
x // A.

The fibration p : E → A is defining a family (E (x) | x : A) of
objects of E indexed by elements of A.



Sections of a fibration

A section s : A→ E of a fibration p : E → A has a value
s(x) : E (x) for every element x : A.

E (x)

��

// E

p
����

1

s(x)

DD

x // A

s

AA

A type theorist will write:

x : A ` s(x) : E (x) (2)

The section s : A→ E is defining a family of elements s(x) : E (x)
indexed by the elements x : A.



Elementary extension

The functor
e : E → E(A)

defined by putting e(X ) = (A× X , π1) for every object X ∈ E is a
homomorphism of tribes.

In type theory, the functor e : E → E(A) is defined by context
extension:

` B : Type

x : A ` B : Type

` t : B

x : A ` t : B

A map between two types f : A→ B is an element f (x) : B
indexed by a variable element x : A.

x : A ` f (x) : B (3)



Change of parameters

If f : A→ B is a map in a tribe E , then the base change functor

f ? : E(B)→ E(A)

is a homomorphism of tribes.

In type theory, the functor f ? corresponds to the operation of
substitution: y := f (x)

y : B ` E (y) : Type

x : A ` E (f (x)) : Type

y : B ` s(y) : E (y)

x : A ` s(f (x)) : E (f (x))



Σ-formation rule

If A is an object in a tribe E , then the functor eA : E → E(A) has a
left adjoint ΣA : E(A)→ E defined by putting ΣA(E , p) = E .

x : A ` E (x) : Type

`
∑
x :A

E (x) : Type

More generally if f : A→ B is a fibration, then the base change
functor f ? : E(B)→ E(A) has a left adjoint Σf : E(A)→ E(B).

x : A ` E (x) : Type

y : B `
∑

x :A(y)

E (x) : Type



Internal products

A tribe E has internal products if for every fibration f : A→ B
the base change functor f ? : E(B)→ E(A) has a right adjoint

Πf : E(A)→ E(B)

and if

I the functor Πf takes anodyne maps to anodyne maps;

I the Beck-Chevalley condition holds:

A
u //

f ����
pullback

C

g
����

B
v // D

⇒ E(A)

Πf

��
comm

E(C )
u?

oo

Πg

��
E(B) E(D)

v?
oo

The tribe of Kan complexes Kan has internal products.



Internal products

If E has internal products, then the functor e : E → E(A) has a
right adjoint

ΠA : E(A)→ E

for every object A ∈ E . In type theoretic notation:

x : A ` E (x) : Type

`
∏
x :A

E (x) : Type

The object of maps A→ B between two objects A,B ∈ E is
defined by putting

[A,B] :=
∏
x :A

B

An element f : [A,B] is a map f : A→ B.



Path object

Let A be an object in a tribe E .

A path object for A is obtained by factoring the diagonal
∆ : A→ A× A as an anodyne map r : A→ PA followed by a
fibration (s, t) : PA→ A× A,

PA
(s,t)

##
A

r

>>

∆ // A× A.

A homotopy h : f  g between two maps f , g : A→ B is a map
h : A→ PB such that sh = f and th = g .

The homotopy relation f ∼ g is a congruence on the arrows of E .



The homotopy category

Let E be a tribe

The homotopy category of E is the quotient of E by the
homotopy relation ∼.

ho(E) := E/ ∼

A map f : X → Y in E is called a homotopy equivalence if it is
invertible in ho(E).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X → 1 is a homotopy
equivalence.



Identity type

In Martin-Löf type theory, there is a type constructor which
associates to every type A a dependant type

x :A, y :A ` IdA(x , y) : Type

called the identity type of A.

An element p : IdA(x , y) is regarded as a proof that x =A y .

There is a reflexivity term

x :A ` r(x) : IdA(x , x)

which proves that x =A x .



The identity type is a path object

Let us put

IdA =
∑
x :A

∑
y :A

IdA(x , y)

We obtain a factorisation of the diagonal ∆ : A→ A× A

IdA
(s,t)

##
A

r
>>

∆ // A× A

(Awodey & Warren ) The factorisation ∆ = (s, t)r a path object
for A. A proof p : IdA(x , y) is a homotopy p : x  y .



Tribes are fibration categories

A Brown fibration category is a clan E equipped with a class W of
equivalences such that:

I the base change of an equivalence along a fibration is an
equivalence;

I every map f : A→ B admits a factorization f = pw with w
an equivalence and p a fibration;

I W satisfies 6-for-2:

A
f //

gf ∈W

��
B

g //

hg∈W

@@C
h // D ⇒ f , g , h ∈ W

Theorem
(Shulman, J.) Every tribe is a Brown fibration category.



HOTT in action

Let E be a tribe with internal products.

Definition
(Voevodsky) If A is an object of E we can put

IsCont(A) :=
∑
y :A

∏
x :A

IdA(x , y)

An element p : IsCont(A) is a proof that A is contractible

This may be compared with

IsSingleton(A) := (∃y ∈ A)(∀x ∈ A) x = y

(the Curry-Howard correspondance).



The object IsEquiv(f )

Let f : A→ B be a map in a tribe E (with internal products).

The homotopy fiber of f at y : B is defined by putting

Fib(f )(y) :=
∑
x :A

IdB(f (x), y)

Theorem
(Voevodsky) A map f : A→ B is a homotopy equivalence if and
only if the object

IsEquiv(f ) :=
∏
y :B

IsCont(Fib(f )(y))

has an element p : IsEquiv(f ).



The object Eq(A,B)

Let A and B be two objects in a tribe (with internal products).

Definition
(Voevodsky) Let us put

Eq(A,B) :=
∑

f :[A,B]

IsEquiv(f )

An element w : Eq(A,B) is a homotopy equivalence w : A ' B.



EqA×A(E )

For every fibration p : E → A let us put

EqA×A(E ) =
∑
x :A

∑
y :A

Eq(E (x),E (y))

We then have a factorisation

EqA×A(E )
(p1,p2)

&&
A

u
::

∆ // A× A

where u(x) : Eq(E (x),E (x)) represents the identity map
E (x)→ E (x) for every x : A.



Connection

Definition
A (pseudo) connection on a fibration p : E → A is a map
γ : IdA → EqA×A(E ) such that the following square commutes

A

r

��

u // EqA×A(E )

(p1,p2)

��
IdA

γ
::

(s,t)
// A× A

The map γ(x , y) : IdA(x , y)→ Eq(E (x),E (y)) takes a path
p : x  y to an equivalence γ(p) : E (x) ' E (y).

Theorem
(Voevodsky) Every fibration p : E → A admits a connection
γ : IdA → EqA×A(E ) and γ is homotopy unique.



Univalent fibration

Definition
(Voevodsky) We say that a fibration E → A is univalent if the
connection γ : A→ EqA×A(E ) is a homotopy equivalence.

This means that the map

γ(x , y) : IdA(x , y)→ Eq(E (x),E (y))

is a homotopy equivalence for every x , y : A.

A fibration E → A is univalent if and only if the unit map
u : A→ EqA×A(E ) is a homotopy equivalence.



Small fibrations

Let E = (E ,F) be a tribe.

We say that sub-class F ′ ⊆ F is a class of small fibrations if the
following conditions hold:

I every isomorphism is a small fibration;

I the base change of a small fibration along any map is small;

I If w : (X , p)→ (Y , p) is a homotopy equivalence in E(A),
then the fibration p : X → A is small if and only if the
fibration q : Y → A is small;

I Etc ....

In the tribe of Kan complexes Kan, there is a notion of κ-small
fibration for every strongly inaccessible cardinal κ.



Semi-universal fibration

We say that a small fibration q : E→ U is semi-universal if for
every small fibration p : E → A there exists a homotopy pullback
square:

E
φ′ //

p
��

E
q
��

A
φ // U

(homotopy pullback square: the induced map E → A×U E is a
homotopy equivalence)

(Voevodsky) If the fibration q : E→ U is univalent, then the
classifying pair (φ, φ′) is homotopy unique.

Martin-Löf type theory (MLTT) has semi-universal fibrations, but
they are not univalent.



Universal fibration

We shall say that a small fibration q : E→ U is universal if it is
semi-universal and univalent. The object (U, q) is said to be a
universe.

Theorem
(Voevodsky) The tribe of Kan complexes Kan has a universal
κ-small fibration Eκ → Uκ for every strongly inaccessible cardinal
κ.



Univalent type theory

Definition
We shall say that the univalence principle holds in a tribe if for
every fibration p : E → A there exists a univalent fibration
p′ : E ′ → A′ together with a homotopy pullback square

E
φ′ //

p

��

E ′

p′

��
A

φ // A′

Definition
We shall say that a type theory T is univalent the univalence
principle holds in T .

For example, Cubical Type Theory (CTT) (Thierry Coquand and
collaborators) is univalent.



Homotopy colimits in a tribe

The notion of homotopy colimit is defined in type theory with the
notion of inductive type.

References: Inductive types in homotopy type theory
[Awodey-Gambino-Sojakova].

We shall use the notion of homotopy pushout informally.



Homotopy pushouts

Recall that a commutative square of simplicial sets

A
v //

��

E

��
B // F

is said to be be homotopy pushout, or homotopy cocartesian if
the map B tA E ′ → F in the commutative diagram

A
v ′

//

��

E ′

�� ##
B // B tA E ′ // F

is a homotopy equivalence, where v = wv ′ : A→ E ′ → E is a
factorisation of v as a cofibration v ′ followed by homotopy
equivalence w .



Descent

A cube C : [1]3 → E , when viewed from above, becomes a square
C ′ : [1]2 → E [1] in the arrow category of E .

f

α

��

β // h

δ
��

g
γ // k

(4)

An edge of C ′ is a square in E .

Theorem
[Rezk] (Descent for pushouts) Suppose that the square
C ′ : [1]2 → ∆Set[1] is homotopy cocartesian. If the squares α and
β of C ′ are homotopy cartesian, then so are the squares δ and γ.



Univalence ⇒ Descent

The proof is left as an exercise to the reader. Hint: we can
suppose that the maps f , g , h and k are Kan fibrations; we then
use the following diagram

f

α

��

β // h

δ
�� φ2

��

g

φ1 //

γ // k

φ ��
Q

where Q : E→ U is a univalent Kan fibration, and where φ1 and
φ2 are classifying f and g respectively.



Model topos

Definition
[Rezk] A combinatorial model category E is said to be a model
topos if it is Quillen equivalent to a left exact Bousfield
localisation of a model category [C ,∆Set] equipped with the
projective model structure.

Theorem
[Rezk] A combinatorial model category E is a model topos if and
only if the following two conditions hold:

I The base change functor f ? : E/B → E/A preserves homotopy
colimits for every map between fibrant objects f : A→ B;

I The descent principle holds (for cubes).



Grothendieck topos

Definition
A category E is said to be a topos if it is equivalent to a left exact
localisation of a presheaf category [C , Set]

Theorem
A locally presentable category E is a topos if and only if the
following two conditions hold:

I The base change functor f ? : E/B → E/A preserves colimits
for every map f : A→ B;

I The presheaf Sub : Eop → Set takes pushout squares to
pullback squares.



Grothendieck topos versus ∞-topos

Grothendieck topos ∞-topos

monomorphisms κ-small maps

t : 1→ Ω Eκ → Uκ



From type theory to higher toposes

ML type theory

syntaxic category

��
tribes

localisation
��

lcc quasicategories

Cubical type theory

syntaxic category

��
Cubical tribes

localisation
��

∞− toposes

I syntaxic category [Gambino & Garner]

I localisation [Kapulkin & Szumilo]

I elementary ∞-topos [Lurie, Shulman]



What is an elementary ∞-topos ?

Tentative answer:

Definition
A tribe E is an elementary infinity-topos if

I E has internal products;

I E has inductive types;

I E is univalent.

An elementary infinity-topos can also be defined to be a
quasi-category satisfying certain conditions. See: A theory of
elementary higher toposes [Nima Rasekh].



Applications of type theory

I The Blakers-Massey Theorem

I The Generalised Blakers-Massey Theorem

I Goodwillie’s Calculus

I Weiss’s Calculus

A new proof of the Blakers-Massey theorem was found in type
theory by [Finster-Licata-Lumsdaine].

The new proof was reformulated in the language of model
categories by Charles Rezk.

Ref: A mechanization of the Blakers-Massey connectivity theorem
in Homotopy Type Theory [Favonia-Finster-Licata-Lumsdaine]



The Blakers-Massey theorem

Recall that a simplical set X is said to be (−1)-connected if it is
non-empty.

If n ≥ 0, X is said to be n-connected if it is connected and
πk (X , x) = 0 for every 1 ≤ k ≤ n and x ∈ X .

Definition
We shall say that a map of simplicial set f : X → Y is n-connected
if its homotopy fibers are n-connected.

Warning: the notion n-connected map defined above is often said
to be (n + 1)-connected in the literature.



The Blakers-Massey theorem

Theorem
(Blakers-Massey) Suppose that we have a homotopy pushout
square of simplicial sets

A

f
��

g // C

��
B // D

in which f is m-connected and g is n-connected. Then the
canonical map (f , g) : A→ B ×h

D C to the homotopy pullback is
(m + n)-connected.



The Freudenthal suspension theorem

The BM theorem implies the Freudenthal suspension theorem:

If X is a pointed n-connected space, then the canonical map
X → ΩΣX is 2n-connected.

Proof: If CX is the (reduced) cone on X , then we have a pushout
square

X

n−con
��

n−con // CX

��
CX // ΣX

Moreover,
ΩΣX ' CX ×ΣX CX

Hence the map X → ΩΣX is 2n-connected by the BM theorem.



The generalised Blakers-Massey theorem

The class of n-connected maps is replaced by the left class L of a
modality.

Ref: Modalities in homotopy type theory [Rijke-Shulman-Spitter].

By definition, a modality in an ∞-topos E is a homotopy
factorisation system (L,R) in which the left class L is closed
under base changes.

For example, L can be the class of effective epimorphisms in E and
R is the class of monomorphisms.

More generally, L can be the class of n-connected maps in E and
R the class of n-truncated maps.



The generalised Blakers-Massey Theorem

Recall that the pushout product f�g of two maps f : A′ → A
and g : B ′ → B in an ∞-topos E is the map

f�g : (A′ × B) tA′×B′ (A× B ′)→ A× B

obtained from the commutative square

A′ × B ′

A′×g
��

f×B′
// A× B ′

A×g
��

A′ × B
f×B // A× B



The generalised Blakers-Massey Theorem

Recall that the diagonal of a map f : A→ B in an ∞-topos E is
the map

∆(f ) : A→ A×B A

Theorem
(GBM theorem) [ABFJ] Let (L,R) be a modality in an ∞-topos
E and let

Z

f
��

g // Y

��
X //W

be a pushout square in E . If ∆(f )�∆(g) ∈ L, then the canonical
map (f , g) : Z → X ×W Y belongs to L.

Ref: The Generalised Blakers-Massey Theorem
[Anel-Biedermann-Finster-Joyal]



GBMT ⇒ BMT

Remarks

I if f is m-connected, then ∆(f ) is (m − 1) connected;

I If f is m-connected and g is n-connected, then f�g is
(m + n + 2) connected.

Thus, if f is m-connected and g is n-connected, then ∆(f )�∆(g)
is (m + n) connected.

Therefore: GBMT ⇒ BMT .



Descent ⇒ GBMT

The proof of the GBMT depends on the following descent lemma.

Lemma
[ABFJ] Let (L,R) be a modality in an ∞-topos E and let

f

α

��

β // h

δ
��

g
γ // k

be a pushout square in E [1]. If the square α and β are L-cartesian,
then so are the squares δ and γ.



Goodwillie’s Calculus

Let S be the quasicategory of spaces and let S• be the
quasicategory of pointed spaces.

A functor F : S• → S is said to be a homotopy functor if it
preserves directed colimits.

Recall that Goodwillie’s Calculus associates to a homotopy functor
F : S• → S a tower of approximations by n-excisive functors:

P0(F ) P1(F )oo P2(F )oo ·oo (5)

The first approximation P0(F ) is the constant functor with value
F (0).



Postnikov’s tower

There is an analogy between the Goodwillie tower of a functor F
and the Postnikov tower of a space X

S0(X ) S1(X )oo S2(X )oo ·oo (6)

The first approximation S0(X ) is the set π0(X ) of connected
components of X .

The classical Blakers-Massey theorem is a powerfull tool for
studying the Postnikov tower.

Biedermann’s question: Is there a Blakers-Massey theorem for
Goodwillie’s Calculus?



Goodwillie’s topos

A homotopy functor F : S• → S is entirely determined by its
restriction to the sub-quasicategory of finite pointed spaces
Fin• ⊂ S•.

It follows that the quasi-category of homotopy functors S• → S is
equivalent to the quasi-category [Fin•,S] of all functors Fin• → S.

The functor Pn : [Fin•, S]→ [Fin•,S] is a left exact reflection by a
theorem of Goodwillie.

(Biedermann, Rezk) The quasicategory [Fin•, S] is an ∞-topos,
since it is a presheaf category. Hence the quasi-category [Fin•,S](n)

of n-excisive functors is an ∞-topos.



P-equivalences

Let E be an ∞-topos and P : E → E a left exact reflection.

A map f : X → Y in E is said to be a P-equivalence if the map
P(f ) : P(X )→ P(Y ) is an equivalence.

A map f : X → Y is said to be a P-local if the naturality square

X

f
��

ηX // P(X )

P(f )
��

Y
ηY // P(Y )

is cartesian.

This defines a modality (LP ,RP), where LP is the class of
P-equivalences and RP is the class of P-local maps.

The modality (LP ,RP) is said to be left exact.



The analogy

spaces homotopy functors

Postnikov tower Goodwillie Tower

n-connected maps Pn-equivalences

n-truncated maps Pn-local maps

BM theorem BM theorem for GC



BM theorem for Goodwillie calculus

Theorem
[ABFJ] Consider a homotopy pushout square of homotopy
functors:

F

f
��

g // H

��
G // K

If f is a Pm-equivalence and g is a Pn-equivalence, then the
induced map (f , g) : Z → G ×h

K H is a Pm+n+1-equivalence.

Ref: Goodwillie’s calculus of homotopy functors and higher topos
theory [Anel-Biedermann-Finster-Joyal]



Some applications

A homotopy functor F is said to be n-homogenous if Pn(F ) = F
and Pn−1F = P0F . The space P0(F ) = F (0) is the base of F .

Theorem
(Goodwillie) The category of n-homogenous homotopy functors
over a fixed base is stable for n ≥ 1.

A homotopy functor F is said to be n-reduced if Pn(F ) = 0.

Theorem
(Arone-Dwyer-Lesh) If a homotopy functor F is n-reduced and
(2n − 1)-excisive, then it is infinitely deloopable.

Theorem
(Goodwillie) If n ≥ 1 and F is a n-excisive functor with base
A := F (0), then the map F → Pn−1F is a principal G -fibration,
where G is a n-homogenous functor over A.



Vladimir Voevodsky was a visionary.

I hope his dream of univalent foundation will be realised in a near
future!



Vladimir Voevodsky was a visionary.

I hope his dream of univalent foundation will be realised in a near
future!



Thank you for your attention!


