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Foreshadowing

A good stack of examples, as large as possible, is indispensable
for a thorough understanding of any concept, and when I want to

learn something new, I make it my first job to build one.
Paul Halmos
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Remember

Before formally defining a category, let us summarize what we saw
last Chapter concerning sets and functions. The collection of sets
and functions form a category. By carefully examining this
collection, we will see what is needed in the definition of a
category.

Example

Consider the collection of all sets.

There are functions between sets.

If f is a function from set S to set T, then we write it as
f : S −! T. We call S the domain of f and T the codomain
of f .

Certain functions can be composed: for f : S −! T and
g : T −! U, there exists a function g ◦ f : S −! U which is
defined for s in S as (g ◦ f)(s) = g(f(s)).
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Remember

Example
This composition operation is associative, which means that
for f : S −! T, g : T −! U, and h : U −! V, both ways of
associating the functions h ◦ (g ◦ f) and (h ◦ g) ◦ f are equal to
the function described as follows

s 7! f(s) 7! g(f(s)) 7! h(g(f(s))).

That is, h ◦ (g ◦ f) = (h ◦ g) ◦ f and on s of S this function has
the value h(g(f(s))).

For every set S, there is a function idS : S −! S, which is
called the identity function and is defined for s in S as
idS(s) = s.

These identity functions have the following properties: for all
f : S −! T, it is true that f ◦ idS = f and idT ◦ f = f .
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Remember

Example

The collection of sets and functions form a category called
Set.

This category is easy to understand, and we use it to hone
our ideas about many structures of category theory.
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Basic Definitions

Now for the formal definition of a category.

Definition

A category A is a collection of objects Ob(A) and a
collection of morphisms Mor(A) which has the following
structure:

Every morphism has an object associated to it called its
domain: there is a function domA : Mor(A) −! Ob(A).
Every morphism has an object associated to it called its
codomain: there is a function codA : Mor(A) −! Ob(A).
We write

f : a −! b or a f // b

for the fact that domA(f) = a and codA(f) = b.
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Basic Definitions

Definition (Continued.)

Adjoining morphisms can be composed: if f : a −! b and
g : b −! c, then there is an associated morphism
g ◦ f : a −! c. We can write these morphisms as

a f //

g◦f

&&
b

g
// c.

Every object has an identity morphism: there is a function
identA : Ob(A) −! Mor(A). We denote the identity of a as
ida : a −! a or

a.

ida

��

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.1: Definitions and Examples



Basic Definitions

Definition (Continued.)

This structure must satisfy the following two axioms:

Composition is associative: given f : a −! b, g : b −! c, and
h : c −! d, the two ways of composing these maps are equal:

h ◦ (g ◦ f) = (h ◦ g) ◦ f ,

i.e., they are the same map from a to d.

Composition with the identity does not change the morphism:
for any f : a −! b the composition with ida is f , i.e.,
f ◦ ida = f , and composition with idb is also f , i.e., idb ◦ f = f .
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Basic Examples

Example

Let us mention three examples of categories that we already saw
in the last Chapter. Although we did not call them categories, the
text and exercises showed that they each have the structure of a
category.

Sets and functions form the category Set.

Directed graphs and graph homomorphisms give us Graph.

Groups and group homomorphisms make up Group.
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Basic Definitions

The definition of a category is a “mouthful” that has many parts to
it. There are several important comments concerning this
definition.

Remark

We called the elements of Mor(A) the “morphisms” of the
category. We will also interchangeably use the words maps
and arrows.

It is important to notice that, if we have morphisms f : a −! b
and g : b −! c, then we write the composition as g ◦ f rather
than f ◦ g. We do this because in many categories the
morphisms will be types of functions. When we apply the
composition of functions, it looks like g(f( )) which is
notationally closer to g ◦ f than f ◦ g. As we get more and
more used to the language we will write gf rather than g ◦ f .
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Basic Definitions

Remark (Continued.)

In the previous chapter we saw that for sets S and T we can
look at the collection of all set functions from S to T.

Now we look at the set of all morphisms between two objects.
For objects a and b in category A, there is a collection of all
the morphisms from a to b which we write HomA(a, b). We
call these collections Hom sets.

Composition in the category in terms of the Hom sets
becomes the operation
◦ : HomA(b , c) × HomA(a, b) // HomA(a, c)

(g, f) � // g ◦ f .

The fact that every element a of A has an identity element
means that there is a special morphism in HomA(a, a) that
satisfies the properties stated.
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Basic Examples

The categories Set, Graph, and Group each have collections of
objects and morphisms that are infinite. Consider some examples
of finite categories with finite objects and morphisms.

Example

∅ ∗

id

��
a //

id

��

b

id

��

0 1 2

a

id

��

b

id

��

a //

id

��

b

id

��

oo a //

%%

id

��

b

id

��

yyc

id

EE

2◦ 2I 3
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Basic Examples

Example
0, the empty category, has no objects and no morphisms.

1 has 1 object and the single identity morphism on that object.

2 has 2 objects and 3 morphisms.

2◦ has the 2 objects and the 2 identity maps but does not
have the non-identity morphism.

2I is like 2 but there are two non-identity morphisms, and their
compositions are the identity morphisms. In total, it has 2
objects and 4 morphisms.

3 has 3 objects, 3 identity morphisms, and 3 non-identity
morphisms.

Although these categories may seem trivial, they will be very
useful. They provide easy examples to explore concepts and have
important roles as we explore category theory.
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Basic Examples

Example

Not only does the collection of all sets form a category, but
each individual set has the structure of a category.

Let S be a set. We form the category d(S) where the objects
are the elements of S, and the only morphisms are identity
morphisms.

We call a category with only identity morphisms a discrete
category.

For example the set S = {a, b , c, d} becomes the category:

a

ida

��

b

idb

��

c

idc

��

d.

idd

��
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Examples from Computers

Example

The category of computable functions CompFunc is central
for computer science.

A function is computable if there exists a computer program
that can tell a computer how to execute the function.

That means, there is a computer program (written in some
programming language) and if f(x) = y then when x is
entered into the computer as input, the program will output y.

Computable functions have certain forms of data as input and
output. The kind of data is called a type. Computers deal with
types like Nat (natural numbers), Int (integers), Real, Bool
(Boolean), String, etc. The objects of CompFunc are
sequences (or products) of types.
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Examples from Computers

Example (Continued.)
For example, Int × Bool × Bool × Real.

Given two sequences of types, a morphism of this category
will be a computable function from the first sequence of types
to the second sequence of types.

A typical computable function might look like
f : Int × String × Bool −! Bool × Real × Real × Nat .
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Examples from Computers

Example (Continued.)

Composition of two computable functions is easily seen to be
a computable function (the program for the first program can
be “composed” or “tagged onto” the program for the second
function to form a program for the composition function.) Just
like functions, composition of computable functions are
associative.

For every list of types there exists a (useless) computable
function that accepts data of the appropriate type and outputs
the same data without changing it. Such functions serve as
the identity morphisms in this category. Composition with the
identity functions does not change the function.

(Notice that the name of this category comes from the
morphisms, not the objects of the category.)
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Examples from Computers

This book is
dedicated to
the category
of
computable
functions.
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Examples from Logic

Example

The category Prop is about propositional logic.

The objects of the category are propositional statements
which are statements that are either true or false.

Statements can be combined with logical operations like “and”
(or “conjunction”) ∧, “or” (or “disjunction”) ∨, “implication”⇒,
“biconditional” (or “bi-implication”)⇔, and “negation” (or “not”)
¬.

There is a single morphism from proposition P to proposition
Q if and only if P logically implies (or entails) Q.

For example, there are arrows P ∧ Q −! P, P ∧ Q −! Q,
and P −! P ∨ Q.
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Examples from Logic

Example (Continued.)

The composition in the category exists because if P implies
Q, i.e., (P −! Q) and Q implies R, i.e., (Q −! R), then it is
obvious that P implies R, i.e., (P −! R).

Associativity follows from the fact that there is at most one
morphism between any two objects.

The identities in the category come from the fact that for every
propositional statement P, it is tautologically true that P
implies P (P −! P).

This category is different than the other infinite categories that
we have already seen because between any two objects in
the category there is either a single morphism or there is no
morphism at all.
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Examples from Mathematics

Definition

A magma (M, ⋆) is a set M with a binary operation (an
operation with two inputs) ⋆ : M ×M −! M. This operation is
called the “multiplication” of the magma. It is not assumed that
this operation satisfies any axiom.

A semigroup (M, ⋆) is a magma whose binary operation is
associative, i.e., for all x, y, and z in M,
x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z.

A monoid (M, ⋆, e) is a semigroup whose binary operation
has an identity element, that is, there exists an element e
such that for all x in M, x ⋆ e = x = e ⋆ x.
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Examples from Mathematics

Magmas:

(N,+) (Z,+) (Q,+) (R,+) (C,+)

(N, ·) (Z, ·) (Q, ·) (R, ·) (C, ·)

Semigroups:

(N,+) (Z,+) (Q,+) (R,+) (C,+)

(N, ·) (Z, ·) (Q, ·) (R, ·) (C, ·)

Monoids:

(N,+, 0)(Z,+, 0) (Q,+, 0) (R,+, 0) (C,+, 0)

(N, ·, 1) (Z, ·, 1) (Q, ·, 1) (R, ·, 1) (C, ·, 1)
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Venn Diagram of Algebraic Structures
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Venn Diagram of Algebraic Structures
magma

semigroup

monoid
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Examples from Mathematics

Definition

A commutative monoid (M, ⋆, e) is a monoid whose binary
operation is commutative. That is, the multiplication satisfies
the axiom that for all x and y in M, x ⋆ y = y ⋆ x.

A group (M, ⋆, e,−( )) is a monoid that has an inverse
operation. That is, there is a function −( ) : M −! M such
that for all x in M, x ⋆ −x = e = −x ⋆ x.

A commutative group or an abelian group (M, ⋆, e,−) is a
group whose binary operation is commutative. That is, the
multiplication satisfies the axiom that for all x and y in M,
x ⋆ y = y ⋆ x. Another way to think about it is as a
commutative monoid with an inverse operation.
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Examples from Mathematics

Groups:

(Z,+, 0,−) (Q,+, 0,−) (R,+, 0,−) (C,+, 0,−)

(Q+, ·, 1, ( )−1) (R+, ·, 1, ( )−1)

Abelian group:

(Z,+, 0,−) (Q,+, 0,−) (R,+, 0,−) (C,+, 0,−)

(Q+, ·, 1, ( )−1) (R+, ·, 1, ( )−1)
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Venn Diagram of Algebraic Structures
magma

semigroup

monoid
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Venn Diagram of Algebraic Structures
magma

semigroup

monoid

commutative
monoid group

abelian
group
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Examples from Mathematics

Definition

A ring (M, ⋆, e,−,⊙, u) is an abelian group with another
binary associative operation ⊙ : M ×M −! M and another
identity element u (i.e. for all x in M, we have
x ⊙ u = x = u ⊙ x, or another way to say that is (M,⊙, u)
forms a monoid) and for which the new operation distributes
over the old operation. That means that for all x, y, and z in M

x⊙(y⋆z) = (x⊙y)⋆(x⊙z) and (y⋆z)⊙x = (y⊙x)⋆(z⊙x).

A field (M, ⋆, e,−,⊙, u, ( )−1) is a ring with a partial inverse
for the second binary operation. This means that there is an
operation ( )−1 : M −! M which is defined for all x in M
except the identity element e. The inverse operation satisfies
the axiom: for all x , e, x ⊙ x−1 = u = x−1 ⊙ x.
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Examples from Mathematics

Rings:

(Z,+, 0,−, ·, 1)(Q,+, 0,−, ·, 1) (R,+, 0,−, ·, 1) (C,+, 0,−, ·, 1)

Fields:

(Q,+, 0,−, ·, 1, ()−1)(R,+, 0,−, ·, 1, ()−1)(C,+, 0,−, ·, 1, ()−1).
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Venn Diagram of Algebraic Structures
magma

semigroup

monoid

commutative
monoid group

abelian
group
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Venn Diagram of Algebraic Structures
magma

semigroup

monoid

commutative
monoid group

abelian
group

ring

field
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Examples from Mathematics

Monoids will play a major role in this text so it pays to spell out all
the details of their definition and to state them with commutative
diagrams.

Definition

A monoid is a triple (M, ⋆, e) where

M is a set of elements,

⋆ : M ×M −! M is a set function, i.e., a binary operation, and

e is an element of M, i.e., there is a set function that picks out
e in M, υ : {∗} −! M.

These ingredients must satisfy the following requirements: ⋆ is
associative, and e must behave like a unit, i.e. the commutativity of
the following two diagrams
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Examples from Mathematics

Definition (Continued.)

M ×M ×M
idM×⋆ //

⋆×idM

��

M ×M

⋆

��

{∗} ×M
υ×idM //

�

��

M ×M

⋆

��

M × {∗}
idM×υoo

�

��

M ×M ⋆
// M M.
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Examples from Mathematics

An example of a monoid that will arise over and over again is the
following.

Example

Let A be any category and a be any object in A, then
consider all the morphisms that start and end at a, i.e.
HomA(a, a).

A morphism that starts and ends at the same object is called
an endomorphism.

We write this collection as End(a) and it forms a monoid.

Given f : a −! a and g : a −! a, we can multiply them as
f ◦ g.

The multiplication is associative because the composition in
A is associative. The unit is the identity morphism ida

because for all f , we have f ◦ ida = f = ida ◦ f .
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Examples from Mathematics

Following an earlier Important Categorical Idea, we must
discuss morphisms between each of these algebraic
structures.

For each type of algebraic structure there is a notion of a
homomorphism from one structure to another structure of
the same type.

If M and M′ are of the same type of structure, then a
homomorphism f : M −! M′ is a set function from M to M′

that “respects” or “preserves” all the operations.
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Examples from Mathematics

For example, if (M, ⋆, e,−,⊙, u) and (M′, ⋆′, e′,−′,⊙′, u′) are
both rings, then a homomorphism of rings is a set function
f : M −! M′ that satisfies the following axioms:

f must respect the multiplication operations: for all x, y in M,
f(x ⋆ y) = f(x) ⋆′ f(y).
f must respect the identity elements: f(e) = e′.
f must respect the inverse operations: for all x in M,
f(−x) = −′(f(x)).
f must respect the other binary operations: for all x, y in M,
f(x ⊙ y) = f(x) ⊙′ f(y).
f must respect the other identity elements: f(u) = u′.
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Examples from Mathematics

Because of the importance of monoids in this book, let us work out
the details of being a monoid homomorphism in terms of diagrams.

Definition

Let (M, ⋆, υ) and (M′, ⋆′, υ′) be monoids and f : M −! M′ be a set
function, then f is a monoid homomorphism if it respects the
multiplications and the units. This means these two diagrams
commute:

M ×M
f×f //

⋆

��

M′ ×M′

⋆′

��

{∗}

υ

{{

υ′

$$

M
f

// M′ M
f

// M′.
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Examples from Mathematics

Theorem

The composition of homomorphisms is a homomorphism and the
composition operation is associative.

Proof.
Let M,M′, and M′′ be some type of structure with binary
operations ⋆,⋆′, ⋆′′, respectively. If f : M −! M′ and
g : M′ −! M′′ are homomorphisms, then we have

(g ◦ f)(x ⋆ y) = g(f(x ⋆ y)) by def of composition

= g(f(x) ⋆′ f(y)) bec f is a homomorphism

= g(f(x)) ⋆′′ g(f(y)) bec g is a homomorphism

= (g ◦ f)(x) ⋆′′ (g ◦ f)(y) by def of composition

Hence g ◦ f : M −! M′′ is a homomorphism. This composition is
associative because they are basically set functions. □
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Examples from Mathematics

Each of the algebraic structures defined here (and much more)
together with their homomorphisms give an example of a category.

Example

For these algebraic structures, the collection of all the structures
and their homomorphisms form a category. This gives us the
categories Magma, SemiGp, Monoid, ComMonoid,
Group, AbGp, Ring and Field. The relationships between
these categories will be examined in Chapter 4.
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Examples from Mathematics

Example

Not only does the entire collection of monoids form a
category, but each individual monoid can be seen as a special
type of category.

If (M, ⋆, e) is a monoid, then there exists a category
A(M, ⋆, e) or just A(M) whose morphisms are the elements
of the monoid.

The category consists of a single object ∗, and the morphisms
in A(M) are the elements of M and they come and go from ∗.
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Examples from Mathematics

Example (Continued)

Such a category is called a one-object category or a
single-object category. We might visualize this as in the
following the two examples:

∗ addb ::

c

DD ∗

y



···

QQ

z

11

t
��

Composition of morphisms are given by the monoid
multiplication. That is, if there are elements of the monoid
m : ∗ −! ∗ and m′ : ∗ −! ∗, then their composition is
m′ ⋆m : ∗ −! ∗. The identity element of the monoid, e,
becomes the identity morphism id∗ in the category A(M).
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Examples from Mathematics

We close our list of mathematical examples of categories with the
notion of a topological space. This structure is one of the most
important structures in modern mathematics and physics.

Definition

A topological space (T , τ) is a set T (the elements here are
called “points”) and τ a set of subsets of T that are called open
sets. The subsets τ satisfies the following requirements:

the empty set ∅ and the entire set T are in τ,

the set τ is closed under finite intersection: given a finite set of
subsets in τ, their intersection is in τ, and

the set τ is closed under arbitrary union: given any set of
subsets in τ, their union is in τ.

The collection τ is called the topology of T.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.1: Definitions and Examples



Examples from Mathematics

The intuition is that the open sets determine which elements can
be distinguished by maps in the category. If t0 and t1 are in the
same open set, then it is going to be hard to distinguish them. For
typical spaces, an open set around a point contains all the points
near it. Here is a typical space with points t0 and t1 and open sets
around those points.

t0
t1
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Examples from Mathematics

Example

For every set of points T, there are two extreme examples of
topologies on T.

If τ is the set of all subsets of T, i.e., the power set of T, then
T is said to have the discrete topology.

If τ only consists of the empty set ∅ and the entire set T, then
all three requirements are satisfied and T is said to have the
indiscrete topology or the trivial topology.

The discrete topology has the most open sets possible, and
the indiscrete topology has the least open sets possible. The
other topologies fall somewhere between these two extremes.
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Examples from Mathematics

The definition of a topological space goes hand-in-hand with the
definition of a map between topological spaces. Such maps are
called “continuous maps.”

Definition

Given topological spaces (X , τ) and (Y , σ), a continuous map f
from (X , τ) to (Y , σ), written f : (X , τ) −! (Y , σ) is a set function
f : X −! Y that satisfies the following requirement:

for every open set V ∈ σ, the preimage f−1(V) =

{x ∈ X : f(x) ∈ V} ⊂ X is an open set in τ.

Notice that the requirement, in a sense, goes “backwards.” We do
not require open sets to go to open sets. Rather, we require that
open sets come from open sets.
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Examples from Mathematics

f−1(V) V

f

X Y

A continuous map. The preimage of an open set is an open set.
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The following is a theorem about the extreme topologies.

Theorem

Consider topological spaces (X , τ) and (Y , σ), if

σ is the indiscrete topology, or

τ is the discrete topology

then any function f : X −! Y is a continuous map.

Proof.
If σ is the indiscrete topology, its only two open sets are the ∅
and Y . Then f−1(∅) = ∅ ⊂ X and, since f takes every element
of X to some element in Y , we have f−1(Y) = X , which are
both in τ.

If τ is the discrete topology, then no matter what open set is in
σ, the preimage of it is in τ because τ has every subset of X .

□
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Exercise
Show that the composition of two continuous maps is a continuous
map.

Exercise
Show that the composition operation is associative.

Exercise

Show that the identity function idT : (T , τ) −! (T , τ) is a
continuous map and it acts like a unit to the composition operation.

Summing up these Exercises gives us the following category of
topological spaces.

Example

The collection of all topological spaces and continuous maps form
the category Top.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.1: Definitions and Examples



Examples from Physics

Our physics examples are mostly (mathematical) structures that
are used by physicists to describe physical phenomena. We will
discuss vector spaces, manifolds, and matrices.

Physicists use vector spaces to describe directions and
lengths.

They use manifolds to describe phenomena with enough
structure to perform calculus-like operations.

Matrices are arrays of numbers that store multidimensional
information.
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We will define and work with vector spaces the mini-course on
linear algebra. Suffice it to say the following.

Example

For every field K, the category of K-vector spaces and linear
transformations form a category KVect. We will mostly be
concerned with RVect and CVect.
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Physicists (and mathematicians) work with manifolds. These are
“nice” topological spaces.

Definition
A smooth n-dimensional manifold or a n-manifold is a topological
space that has the property that at every point there is a
surrounding open set that “looks like Rn.” We say it is “locally Rn.”

Rather than getting into the nitty-gritty details of the definition, let
us look at many examples.

Example

Consider the surface of planet Earth. We all know that the Earth is
a sphere (with some flattening at the poles). However, when we
look around us, Earth looks like a flat plane, i.e., it looks like R2.
Therefore the surface of the Earth is a 2-dimensional manifold. For
that matter, the surface of every sphere is a 2-manifold.
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Example
Let us go through some examples.

A point is a 0-dimensional manifold.

The empty set is an n-manifold for all n because it is true that
every point in the empty set is locally Rn.

There are essentially two types of 1-dimensional manifolds:
an open line and something closed like a circle.

It is important that the ends of the curved line be “open” (as in
(0, 1) ⊆ R as opposed to [0, 1] ⊆ R which is “closed.”) Any
point on the line, regardless how close the point is to the end,
has a small neighborhood that looks like an “open” part of the
real line.
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Two 1-dimensional manifolds: an open line and a closed like circle.
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Two topological spaces that are not manifolds. The curved line on
top is not a 1-manifold because the end point at the right is not
locally like the real line. The “Y” on the right is not a manifold
because the one point in the middle has three lines coming out of
it, and every point in R has two lines coming out of it. At that
central point, it does not look like R1.Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.1: Definitions and Examples
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(i) (ii)

(iii) (iv)

Four 2-manifolds. (i) is a sphere, (ii) is a doughnut with one hole,
(iii) is a doughnut with two holes and (iv) is a doughnut with three
holes. We can go on and discuss a doughnut with n holes. It is a
theorem that these are all the finite (the technical term is compact)
2-manifolds. The number of holes is called the genus of the
2-manifold. The sphere has genus 0.
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Let us talk about maps between manifolds.

Definition
A map between manifolds is called a smooth map if it is a
continuous map of topological spaces and it respects all the local
Rn structure. (Again, we ignore the technical details of the
definition, because we will not be using the details.)

Example

The n-dimensional manifolds and smooth maps form a category
n-Manif. All the different dimensional manifolds and all the
possible smooth maps can be combined to form a category
Manif.
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Example

The set of all matrices with real number entries forms a category
RMat. The objects are the natural numbers, and the set of all
morphisms from m to n is the set of n by m matrices with real
number entries. In order to avoid confusion, we will write a matrix
A : m −! n as Anm. The composition in RMat is simply matrix
multiplication. In detail, if Anm is a m by n matrix and Bpn is a n by
p matrix, then the matrix multiplication Bpn · Anm is the composition
of the morphisms as depicted here:

m
Anm

//

Bpn ·Anm

&&
n

Bpn

// p.

For every n, we say that there is a unique “empty” matrix in
HomRMat(0, n) and similarly in HomRMat(n, 0). Like the elements
in an empty set, such matrices do not exist. However, we need to
say that they are there, for “bookkeeping” reasons. The
associativity of composition follows from the fact that matrix
multiplication is associative. The identity morphism idm : m −! m
will be to the identity m by m matrix (1’s down the diagonal and 0
everywhere else.) One can make similar definition for matrices
with entries in other number systems. We will deal with categories
RMat,ZMat,QMat, and CMat, which will play major roles in
the coming pages. We will also deal with Boolean matrices (entries
that are either 0 or 1), BoolMat. In general, if K is a field, then
KMat is the category of matrices with entries in K.
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Example

Consider the following example of multiplying matrices with entries
in N.

4 

1 2 3 4

5 6 7 8

9 10 11 12



//


38 44 50 56

83 98 113 128


**3 

1 2 3

4 5 6



// 2.
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We met the category Set of sets and functions between sets.
There is another category with sets as objects which contains
more morphisms. Relations are generalizations of functions that
describe connections between sets.

Definition
A relation R from set S to set T, written R : S ̸−! T, is a subset
of S × T. That is, R ⊆ S × T.
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A function is a special type of relation.

Example

Every function f : S −! T can be seen as a relation f̂ : S ̸−! T

f̂ = {(s, t) : f(s) = t} ⊆ S × T .

Relations are more general than functions because (i) some
elements in S might not be related to any element in T, and,
furthermore, in a relation (ii) some elements in S might be related
to more than one element in T.

Relations can be composed. Given a relation R : S ̸−! T and
Q : T ̸−! U, the composition is written as Q ◦ R : S ̸−! U and is
defined as

Q◦R = {(s, u) : there exists a t ∈ T such that (s, t) ∈ R and (t , u) ∈ Q}.
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Example

Consider the following three sets S = {a, b , c, d, e},T = {w, x, y, z}
and U = {1, 2, 3, 4}. Let R : S ̸−! T and Q : T ̸−! U be defined
as R = {(a, x), (a, y), (c, x), (d, z)} and Q = {(w, 4), (x, 2), (y, 2)}.
Then Q ◦ R = {(a, 2), (c, 2)}
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We can form the category of sets and relations.

Example

The category Rel of relations has sets as objects and relations
between sets as morphisms.
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Definition

Some relations have special properties. Here are several possible
properties of relations. The relation R : S ̸−! T is

total-valued if for every s ∈ S there is at least one element
t ∈ T such that (s, t) ∈ R.

single-valued if for every s ∈ S there is at most one t ∈ T
such that (s, t) ∈ R. In other words, if (s, t) ∈ R and
(s, t ′) ∈ R then t = t ′.

one-to-one if for every t ∈ T there is at most one s ∈ S such
that (s, t) ∈ R. In other words, if (s, t) ∈ R and (s′, t) ∈ R then
s = s′.

onto if for every t ∈ T there is an s ∈ S such that (s, t) ∈ R.

While, in general, a relation is from one set to another set, it is also
possible to have a relation from a set to itself. Such a relation tells
how elements in a set are related to themselves. There are also
special properties of relations from a set to itself. The relation
R : S ̸−! S is

reflexive if for every s ∈ S, we have (s, s) ∈ R.

symmetric if for every s, t ∈ S, (s, t) ∈ R, implies (t , s) ∈ R.

transitive if for every s, t , u ∈ S, (s, t) ∈ R and (t , u) ∈ R,
implies (s, u) ∈ R.

anti-symmetric if for every s, t ∈ S, (s, t) ∈ R and (t , s) ∈ R,
implies s = t .

total if for every s, t ∈ S, either (s, t) ∈ R or (t , s) ∈ R.
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Definition

For every relation R : S ̸−! T, there is a related inverse relation
R−1 : T ̸−! S that is defined as

R−1 = {(t , s) : (s, t) ∈ R} ⊆ T × S.

Example

Let S = {a, b , c, d, e} and T = {w, x, y, z} be sets and R : S ̸−! T
be defined as R = {(a, x), (a, y), (c, x), (d, z)}, then R−1 : T ̸−! S
is {(x, a), (y, a), (x, c), (z, d)}.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.1: Definitions and Examples



blahblahblah

We saw that properties of functions can be understood in terms of
composition of functions, here, the properties of relations can be
understood in terms of composition of relations.

Theorem

Relation R : S ̸−! T has the property of being

total-valued if idS ⊆ R−1 ◦ R.

single-valued if R ◦ R−1 ⊆ idT .

one-to-one if R−1 ◦ R ⊆ idS .

onto if idT ⊆ R ◦ R−1.
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There are similar methods to describe properties of relations from
a set to itself.

Theorem
Relation R : S ̸−! S has the property of being

reflexive if idS ⊆ R.

symmetric if R = R−1.

transitive if R ◦ R ⊆ R.

anti-symmetric if R ∩ R−1 ⊆ idS .

total if R ∪ R−1 = S × S.
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Proof.
We will prove that a relation is total-valued if and only if
idS ⊆ R−1 ◦ R.

R total-valued ⇐⇒ for any s ∈ S there is a t ∈ T with (s, t) ∈ R

⇐⇒ for any s ∈ S there is a t ∈ T with (t , s) ∈ R−1

⇐⇒ for any s ∈ S there is a t ∈ T with (s, t) ∈ R

and (t , s) ∈ R−1

⇐⇒ for any s ∈ S we have (s, s) ∈ R−1 ◦ R

⇐⇒ idS ⊆ R−1 ◦ R.
□
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Definition
We can use these properties to construct many definitions about
arbitrary relations between sets.

A partial function is a relation that is single-valued.

A function is a partial function that is total-valued, i.e., a
relation that is total-valued and single-valued.

A one-to-one function is a function that is one-to-one.

An onto function is a function that is onto.

An isomorphism is a function that is one-to-one and onto.
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relation

total-valued
single-valued

partial function

one-to-one

onto

function

isomorphism
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Venn Diagram of Types of Relations Between a Set and
Itself

relation

transitive reflexive

symmetric

anti-symmetric

partial order

total order

preorder

equivalence
relation

∗id
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We can also make definitions about relations between a set and
itself.

Definition
A preorder is a relation from a set to itself that is reflexive and
transitive.

A partial order is a preorder that is anti-symmetric, i.e., it is a
relation that is reflexive, transitive, and anti-symmetric.

A total order is a partial order that is total, i.e., it is a relation
that is reflexive, transitive, anti-symmetric and total.

An equivalence relation is a relation from a set to itself that
is reflexive, symmetric, and transitive.
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These definitions are very important and need to be memorized.
The notions of preorder and partial order will appear on almost
every page of the rest of the book.
Partial functions compose like relations. In detail, if f : S −! T and
g : T −! U, then g ◦ f : S −! U is a partial function and on input
s, it will have a the value g(f(s)) if s is defined for f and g is
defined for f(s). The identity relation is also a partial function.
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Example

The category Par of partial functions has sets as objects and
partial functions between the sets as morphisms. Composition and
identity functions are the same as in Rel.
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In summary, the categories, Rel,Par, and Set all have sets
as objects, all have the same composition, and all have the
same identity morphisms.

Rel is the biggest of the three and Set is the smallest of the
three.

(Since all three categories have sets as objects, it is
disingenuous for Set to have its name. The category Set
should really be called Fun.)
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Let us focus on partial orders and restate the definition.

Definition

A partial order (P,≤) is a set P and a relation ≤⊆ P × P that
satisfies the following requirements:

≤ is reflexive: for all p ∈ P, p ≤ p,

≤ is transitive: for all p, q and r in P, if p ≤ q and q ≤ r then
p ≤ r, and

≤ is antisymmetric: for all p and q in P, if p ≤ q and q ≤ p
then p = q.

(Our use of the symbol ≤ is not to be confused with the standard
use of the same symbol with numbers.
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As typical category theorists, right after defining a structure, we are
interested in defining the morphisms between structures of this
type.

Definition

Let (P,≤) and (Q ,⪯) be two partial orders. An order preserving
function f : (P,≤) −! (Q ,⪯) is a function from P to Q that
satisfies the following axiom: for all p and p′ in P, if p ≤ p′ then
f(p) ⪯ f(p′).

Exercise
Show that the composition of two order preserving functions is
order preserving. Furthermore, show that the composition is
associative.

Exercise
Show that the identity function is order preserving and that the
identity order preserving function acts like a unit to the
composition.

Putting this all together, we get another example of a category.

Example

The category PO consists of all partial orders and order
preserving maps.
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Example

Not only does the collection of all partial orders form a category,
but each individual partial order forms a category. Let (P,≤) be a
partial order. Consider the category B(P,≤) or B(P) whose
objects are the elements of P and a single morphism p −! q if
and only if p ≤ q. The transitivity of ≤ assures us that the
composition works. The fact that there is at most one morphism
between any two objects shows us that the composition is
associative. The reflexivity of ≤ corresponds to the identity maps.
We sometimes abuse notation and write P for the category.

Example

Everything we said about partial orders is true about preorders.
Hence there is a category of all preorders and order preserving
maps which we call PreO. Furthermore, every preorder in (P,≤)
forms a category.
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Central Idea

Important Categorical Idea

Contexts Are Central. Certain structures have arisen several
times in different contexts. Consider the rational numbers Q, the
real numbers R, and the complex numbers C. They are (to name a
few)

Sets of numbers and hence objects of Set.

Algebraic objects, i.e., objects of the categories Magma,
SemiGp, Monoid, Group, AbGp, Ring, and Field. R
is also a real vector space, while C is a real vector space and
a complex vector space.

As monoids they each are also single object categories
A(Q),A(R), and A(C).

They are topological objects, i.e., they can be given topologies
and hence are objects in Top. R is also a 1-dimensional
manifold while C is a 2-dimensional real manifold.
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Important Categorical Idea (Continued.)

Contexts Are Central.

They are objects in the categories Par and Rel.

They are partial orders and hence objects in PO .

Each one is a partial order category: B(Q),B(R), and B(C).

This fact that one concept can be seen in many different contexts
is sometimes confusing to the beginner. However, with time, one
gets the hang of it. This possible confusion forces us to specify the
context of the concept that we are discussing.
Let us stress this point with an example. While a group theorist
looks at the real numbers one way, a topologist looks at the real
numbers in another way, and a physicist and a computer scientist
look at the real numbers in their own ways, the category theorist
must look at the real numbers in all possible ways.
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Example

Let S be a set, then P(S) is the powerset of S (the set of all
subsets of S). P(S) has the structure of a partial order. The order
relation is ⊆ . That is, there is a morphism from one subset of S to
another if the first one is a subset of the second. The set P(S) is a
partial order (and a Boolean algebra, which we will meet in Section
??) and hence a category.

We have seen that every monoid, every set, and every partial
order forms a category. What about a graph? A graph does not
necessarily have the structure of a category. A graph might not
have identity morphisms and a graph by itself does not have a
composition operation. So while the category of all graphs and
graph homomorphisms forms the category Graph, each
individual graph need not form a category.
Moving on to some logic examples:

Example

The category of logical circuits is denoted Circuit. The objects
are the natural numbers. The morphisms from m to n are all logical
circuits with m inputs and n outputs. Figure 86 is a typical circuit
which has 6 inputs and 2 outputs, i.e., an element of
HomCircuit(6, 2).
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•
•

•

•
•

•

•A
B

C

D
E

F

•

A∧B

¬(C∧E)

D∧E

¬F

(A∧B)∨(¬(C∧E))

•

(D∧E)∧(¬F)

((A∧B)∨(¬(C∧E)))∧(D∧E)

A∨((D∧E)∧(¬F))

A logical circuit with 6 inputs and 2 outputs.
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Let us just remember some simple logical gates:
These are the AND, OR, NOT, NAND and NOR gates. The AND,
OR, XOR, NAND gates are all elements of Hom(2, 1) and the NOT
gate is in Hom(1, 1)
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Let us draw a circuit with m input wires and n output wires as
i1

C

o1

i2 o2

...
...

im on.
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The composition of two circuits is as follows. Given two circuits, C
with m input wires and n output wires, and C ′ with n input wires
and k output wires, we can compose them to form C ′ ◦ C as

i1

C

o1

C ′

p1

i2 o2 p2

...
...

...

im on pk .

which has m input wires and k output wires.
The composition is obviously associative.
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For each n, the identity circuit is simply n straight wires that do
nothing. For example Id5 looks like this

i1 o1

i2 o2

i3 o3

i4 o4

i5 o5
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Examples from Logic
Let us close our first list of examples with the notion of proof.

Example

For this example we will have to fix some type of logical system
(we are being intentionally vague). For each such logical system
there will be a category Proof. The objects of the category will be
formal and exact logical statements, just like in Prop. A morphism
from A to B will be a formal and exact proof that assumes A is true
and concludes that B is true. If there are formal proofs f : A −! B
and g : B −! C then by concatenating the two proofs there is a
formal proof g ◦ f : A −! C . The proof with just the statement A
goes from A to A which corresponds to the identity on A. Notice
that this category has the same objects as Prop but in contrast to
Prop where there is at most one morphism between any two
objects, here in Proof, there might be more than one proof
between logical statements and hence more than one morphism
between two objects.
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Now that we finished our first batch of examples, we need to reflect
on some general ideas about the size of categories. Set theorists
make a distinction between collections called “classes” and
collections called “sets”. A class is a very “large” collection of
entities while a set is a somewhat “small” collection of entities that
are part of a class. Mathematicians usually restrict themselves to
work with sets rather than classes. One talks about sets with
algebraic structure or sets with topological structure. One does not
hear about classes with such structures. This text will not worry
much about these issues. However, definitions are in order.

Definition
A category is called small if the objects and morphisms of the
category are sets and not classes. If either the objects or the
morphisms are a class, the category is called large. A category is
called locally small if each of the Hom sets are sets and not
classes.
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Let us discuss sizes of some categories we have seen. Categories
that are small are partial orders, preorders, and groups or monoids
as single-object categories. Most of the rest of the categories that
we dealt with are locally small but not small. For example, the
category of sets is locally small but not small because the objects,
which is the collection of all sets, is a class and not a set. Notice
that even the subcollection of one-element sets is a class and not
a set. The categories Graph and Group each have a proper
class of objects but their Hom sets are proper sets. These
categories are locally small. For the same reason, Top and
Manif are locally small.
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Before closing this section, it is worth noting that there is another
definition of a category which is equivalent to Definition ??.
Equivalent means that these two definitions describe the same
structures. The main difference is that while the previous definition
uses a collection of objects and a collection of morphisms, this
definition only uses a collection of morphisms (i.e., it is a
“single-sorted theory”). Objects are not mentioned in this definition
but they are essentially associated with special types of
morphisms called identity morphisms. The domain and codomain
of every morphism are such identity morphisms. In other words,
we can view a function f as

dom(f) <<
f // cod(f)bb

We did not start with this definition as it is slightly less concrete
and might discourage the novice. We mention it now because this
definition is actually simpler (single-sorted rather than two-sorted)
and it will be useful when talking about higher-dimensional
categories (in particular see Definition ?? in Section ??.) The
definition is also important because it stresses the counterintuitive
idea that it is the morphisms — not the objects — that are
important in a category. The first-time reader can feel free to skip
this definition.
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Another Definition of a Category

Definition

A category A is a collection of morphisms Mor(A) with the
following structure:

Every morphism has a domain morphism: there is a function
dom : Mor(A) −! Mor(A).

Every morphism has a codomain morphism: there is a
function cod : Mor(A) −! Mor(A).

There is a composition operation ◦: if f and g satisfy
codA(f) = domA(g), then there is an associated morphism
g ◦ f .
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Another Definition of a Category

Definition (Continued.)

These operations must satisfy the following axioms:

The domain of a composite is the domain of the first:
dom(g ◦ f) = dom(f).

The codomain of a composite is the codomain of the second:
cod(g ◦ f) = cod(g).

The composition is associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f .

The domain morphism acts like an identity: f ◦ dom(f) = f .

The codomain morphism acts like an identity: cod(f) ◦ f = f .

The domain morphisms come and go from themselves:
dom(dom(f)) = dom(f) = cod(dom(f)).

The codomain morphisms come and go from themselves:
dom(cod(f)) = cod(f) = cod(cod(f)).
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Foreshadowing

Chapter 2: Categories
Section 2.2: Basic Properties

Commutative Diagrams
Types of Morphisms
Types of Objects
Uniqueness of Objects and Morphisms
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Basic Properties of Categories

Definition
A diagram is a part of a category that has objects and morphisms
between those objects. We say that a diagram commutes or is a
commutative diagram if any two paths from the same starting
object to the same finishing object actually describe the same
morphism in the category.
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Basic Properties of Categories

Three examples of commutative diagrams

a f //

h

��

b

g

��

a f //

h

��

b

g

��

a
f //

g
//
b

h // c

c c
i

// d

(i) (ii) (iii)

(i) is a commutative triangle and it says that g ◦ f = h.

(ii) is commutative square and it says that g ◦ f = i ◦ h.

(iii) means that h ◦ f = h ◦ g.
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Basic Properties of Categories

As another example, we can write the requirement that morphism
composition has to be associative and that composition with the
identity morphisms does not change the morphism as the following
two commutative diagrams:

a f //

g◦f

""

h◦(g◦f)

��

(h◦g)◦f

AAb
g
//

h◦g

<<c h // d a
ida //

f

""
a f //

f

<<b
idb // b
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Special Morphisms of Categories

Within a category, there are special types of morphisms.

Definition
A morphism f : a −! b is a monomorphism or monic if for all
objects c and for all g : c −! a and h : c −! a with the
relationship

c
g

//

h
//
a f // b

the following rule is satisfied:

If f ◦ g = f ◦ h, then g = h.

Another way to say that f is monic is to say that f is left
cancelable. That is, if f is on the left of two sides of an equation,
we can cancel it.
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Special Morphisms of Categories

Example

In Set, a map f : S −! T is monic if and only if it is an injection
(one-to-one). Assume f is monic. Consider the one-object set {∗}.
Let g : {∗} −! S and h : {∗} −! S each pick out an element of S.
The statement that f is monic amounts to

If f(g(∗)) = f(h(∗)), then g(∗) = h(∗).

Thinking of g(∗) and h(∗) as elements in S, this is exactly the
requirement that f is an injection. To go the other way, remember
we saw that f is injective if and only if there is a f ′ such that
f ′ ◦ f = ida . So if f ◦ g = f ◦ h, then we can compose both sides
with f ′ to get f ′ ◦ f ◦ g = f ′ ◦ f ◦ h and hence g = h.

Exercise
Show that the composition of two monics is monic.
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Special Morphisms of Categories

Definition
A morphism f : a −! b is an epimorphism or epic if for all objects
c and for all g : b −! c and h : b −! c with the relationship

a f // b
g

//

h
//
c

then the following rule is satisfied:

If g ◦ f = h ◦ f , then g = h.

Another way to say that f is epic is to say that f is right cancelable.

Exercise
Show that the composition of two epics is epic.
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Special Morphisms of Categories

Definition
A morphism f : a −! b is an isomorphism if there exists a
morphism g : b −! a such that g ◦ f = ida and f ◦ g = idb . The
morphisms f and g are called inverses of each other. In such a
situation we say that a and b are isomorphic and we write this as
a � b.
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Special Morphisms of Categories

Exercise
Show that if a morphism has an inverse it is unique.

Exercise
Show that any identity morphism is a isomorphism.

Exercise
Show that the composition of two isomorphisms is an
isomorphism.

Exercise
Show that in any category the relation of being isomorphic is an
equivalence relation.
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Special Morphisms of Categories

Notice that although the usual definitions of injective, surjective,
and isomorphism are given in terms of elements, the definitions of
epic, monic, and isomorphism are given here in terms of
morphisms in a category. This is of fundamental importance in
category theory.
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Special Morphisms of Categories

There are two types of categories with only isomorphisms.

Definition
A groupoid is a category where all the morphisms are
isomorphisms.
A group is a type of groupoid which has only one object.
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Special Morphisms of Categories

Example

Not only does the entire collection of groups form a category,
but each individual group can be seen as a special type of
category.

If G is a group then C(G) is a category with one object and
the morphisms from the single object to itself are the elements
of G.

The identity in the group becomes the identity of the category
and composition of the morphisms is the group multiplication.

Associativity of the group multiplication becomes associativity
of morphism composition. The fact that every element of the
group has an inverse is another way of saying that every
morphism in the category is an isomorphism.

Yet another way to describe a group is to say a group is a
one-object category where every morphism is invertible.
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Special Objects of Categories

Let us move on and talk about special types of objects in a
category. There are certain objects that can be described by the
way they relate with the morphisms in the category.

Definition
An object i in a category A is called an initial object if there
is a unique morphism from i to every object in A (including i).

An object t is called a terminal object if there is a unique
morphism from every object (including t) to t.

An object z is called a zero object if it is both an initial object
and a terminal object.

When we want to stress that a map f : a −! b uniquely satisfies a

property, we will write it as a f
∃!
// b or f : a

! // b .
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Special Objects of Categories

Example

The empty set ∅ is the initial object in the category of Set
because for any set S there is a unique function f : ∅ −! S or

∅
f
∃!
// S .

Any single element set {∗}, {x}, or {Wanda} is a terminal object
in the category Set because for any set S there is a unique
function f : S −! {∗}.

The category Set does not have a zero object.

Notice that there is only one initial object in Set, namely the
empty set. In contrast, there is a whole class of terminal
objects in Set. While they are all isomorphic, they are not
equal to each other.
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Special Objects of Categories

Example
Let us consider the algebraic categories.

The empty set and the trivial operations on the empty set
satisfy all the requirements of being a magma and a
semi-group.

The empty set is the initial object in the categories Magma
and SemiGp.

In contrast, all the other algebraic categories that we looked at
have at least one constant, and hence, the empty set does not
satisfy the requirements.
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Special Objects of Categories

Example

In Prop the initial object is the proposition that is always false
which is denoted ⊥.

It is the initial object because if you start off with a falsehood,
any proposition is a consequence.

The terminal object is the proposition that is always true,
denoted ⊤ because it is a consequence of any proposition.

(There is usually no zero object unless the logical system is
inconsistant and ⊤ = ⊥. In that case, the logical system is
totally worthless.)

The category Proof does not have an initial or terminal
object because, in general, there is more than one way to
prove an implication.
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Special Objects of Categories

Example

Let (P,≤) be a partial order and A(P,≤) be its associated
category.

The initial object of that category is the bottom element which
is below every other element.

(This is not to be confused with an “atom” which is an element
that only has the bottom element below it. Think of an atom
as the smallest element —above nothing— and other
elements are made of atoms. There might be many atoms but
there is at most one bottom.)

The terminal object is the top element.

If P is non-trivial then there is no zero-object.
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Special Objects of Categories

Notice we say “an” initial object and not “the” initial object. The
reason for this is that there might be more than one initial object.
However if there is more than one, then they are related in an
interesting way.

Theorem

There is a unique isomorphism between any two initial objects.
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Special Objects of Categories

Proof.
Let i and i′ be objects in A and assume they are each an
initial object.

This argument is summarized with the following commutative
diagram:

i
f //

idi

∃!

99i′
g

//

idi′

∃!
&&

i
f // i′.

From the fact that i is initial and i′ is an object in A, there is a
unique morphism f : i −! i′.

From the fact that i′ is initial and i is an object in A, there is a
unique morphism g : i′ −! i.

□
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Special Objects of Categories

Continued.
From the fact that i is an initial object and i is also an object,
there is a unique morphism from i to i which we know is the
idi : i −! i.

Since there is no other morphism from i to i, it must be that
g ◦ f = idi .

From the fact that i′ is an initial object, idi′ : i′ −! i′ is the
unique morphism from i′ to i′ which means f ◦ g = idi′ .

This shows that g = f−1 and f = g−1.

This isomorphism i −! i′ is unique because another
isomorphism would entail a violation of i being initial.

□

This type of theorem — which shows how unique an object or a
morphism is — arises frequently in category theory. We say that
the initial object is “unique up to a unique isomorphism.”
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Central Idea

Important Categorical Idea

The Uniqueness of Morphisms.

We will be very concerned with how unique an entity is.

Sometimes we will describe an entity by giving its
requirements and there will only be one entity that satisfies
the requirements. (For example, in the category of sets there
is only one empty set.)

Sometimes many entities will satisfy the requirements and all
those entities are isomorphic to each other. (For example, in
the category of sets, there are many sets with three objects,
e.g., {a, b , c}, {x, y, z} etc. All these sets are isomorphic to
each other, however, there are six possible isomorphisms
between any two such sets.)
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Central Idea

Important Categorical Idea

The Uniqueness of Morphisms.

There is an intermediate level: there are some requirements
that are satisfied by many different entities, and all these
different entities are isomorphic to each other, but there is a
unique isomorphism between them. (For example, in the
category of sets, there are many one-element sets, and they
are all isomorphic to each other with a unique isomorphism
between them.)

We can summarize this hierarchy as follows:

unique.

unique up to a unique isomorphism.

unique up to an isomorphism.
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Special Objects of Categories

Exercise
Prove that there is a unique isomorphism between any two
terminal objects.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2.2: Basic Properties



Special Objects of Categories

Let us look at some more examples of initial objects, terminal
objects, and zero objects in a category.

Example

Top,Manif: The empty set is the initial object and the
single point is a terminal object. There are no zero objects.

Magma,SemiGp: The empty set is the initial object. The
single-element structure is the terminal object. There are no
zero objects.

Monoid,Group,AbGp,KVect: The single-element
structure is the zero object.

Ring: There is a one-object ring where 0 = 1 and this ring is
terminal in the category. The ring of Z is initial in the category.
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Special Objects of Categories

Example (Continued.)

Field: The single element set is not an object in this
category because we need two different constants (0 and 1).
However, this two-element field is neither initial nor terminal.

KMat: 0 is the zero object.

PO,PreO: The empty set is the initial object. A one-element
set is a terminal object.
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Foreshadowing

Chapter 1: Categories
Section 2.3: Related Categories

Subcategories
Quotient Categories
Skeletal Categories
Opposite Categories
Cartesian Product of Categories.
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Subcategories

Just as there is an obvious notion of a subset of a set, so too there
is an obvious notion of a subcategory.

Definition
Category A is a subcategory of category B (or, another way to
say this is that category B is a supercategory of A) if

The objects of A are part of the objects of B:
Ob(A) ⊆ Ob(B).

The morphisms of A are a part of the morphisms of B:
Mor(A) ⊆ Mor(B).

The composition operation for A is the same as the
composition operation in B but restricted to the elements of
A.

The identity morphisms of A are the same as the identity
morphisms of B.
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Subcategories

Example

The category FinSet of all finite sets and set functions between
them is a subcategory of Set.

Example

The category NMat of matrices with natural number entries is a
subcategory of ZMat where the entries are integers. Notice that
the objects of both of these two categories are the set of natural
numbers. Since

N ⊆ Z ⊆ Q ⊆ R ⊆ C

we have that ZMat is a subcategory of QMat which in turn is a
subcategory of RMat which in turn is a subcategory of CMat.
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Subcategories

Example

Consider the category NANDCircuit.

The objects are the natural numbers, and the set of
morphisms from m to n is the set of all logical circuits made of
NAND gates that have m input wires and n output wires.

This category is a subcategory of Circuit.

Notice that NANDCircuit and Circuit have the same
objects.

It is also well known that every logical circuit with different
types of gates can mimicked by a logical circuit with only
NAND gates. This means that every morphism in Circuit
has at least one corresponding morphism in NANDCircuit.
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Subcategories

Example

The category AbGp is a subcategory of Group. The category of
SemiGp is a subcategory of Magma. There are many other
such subcategories when dealing with algebraic structures.

Example

Since every partial order (reflexive, transitive, and anti-symmetric)
is a preorder (reflexive and symmetric), and the morphisms
between partial orders and preorders are order preserving maps,
the category of partial orders PO is a subcategory of PreO.

Example
Every category has a subcategory that is a groupoid. Just take all
the morphisms that are isomorphisms. Since every identity
morphism is an isomorphism, the groupoid subcategory has the
same objects as the category.
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Quotient Categories

Given a set and an equivalence relation on the set, one can
construct a quotient set. Similarly, given a category and a
souped-up equivalence relation, there is a notion of a quotient
category. The souped-up equivalence relation is a relation that
respects the composition operation in the category.

Definition
Let A be a category. A congruence relation or congruence on A
is an equivalence relation on the collection of morphisms of A that
respects the composition. In detail, a congruence ∼ is an
equivalence relation on each of the Hom sets of the category
which satisfy the following requirement: let f , f ′ : a −! b and
g, g′ : b −! c then the rule

if f ∼ f ′ and g ∼ g′, then (g ◦ f) ∼ (g′ ◦ f ′)

is satisfied.
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Quotient Categories

With the notion of a congruence, we go on to define a quotient
category.

Definition

Let A be a category and ∼ be a congruence relation on A, then a
quotient category A/∼ is a category constructed as follows: The
objects of A/∼ are the same as A and the morphisms of A/∼ are
the quotient collection of morphisms of A under the congruence
relation ∼. This means that for any objects a and b, we have

HomA/∼(a, b) = HomA(a, b)/∼.

The composition operation in A/∼ follows from the composition
operation of A. In detail, [g] ◦ [f ] = [g ◦ f ].
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Other Related Categories

Usually in a category, there are a lot of objects that are isomorphic
but not equal to each other. There are special categories where
there are no isomorphisms between different objects.

Definition
A category is skeletal if any two isomorphic objects are equal.
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Other Related Categories

Every category A has an associated skeletal category sk(A). The
objects of sk(A) are a collection of objects of A where each object
of A is isomorphic to some object in sk(A). In other words, every
object in the original category has an isomorphic representation in
the skeletal category. The skeletal category is a subcategory of the
original category. (This construction demands the axiom of choice.)
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Other Related Categories

The following example goes back to the spirit of the philosopher
Gotlieb Frege. He defined a natural number as the equivalence
class of all finite sets with that number of elements.

Example

Consider the category of FinSet. A skeletal category for FinSet
is NatSet. The objects are the empty set and the sets
{1}, {1, 2}, {1, 2, 3}, . . .. Notice that none of these objects are
isomorphic to any other. Every finite set is isomorphic to one of
these sets. The morphisms in NatSet are all functions between
these sets.
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Other Related Categories

Example

Let (P,≤) be a preorder category. A skeletal category of (P,≤) is a
partial order category. In detail, we form a partial order category
(P0,≤) where the objects of P0 are representatives of isomorphism
classes of P. Two representatives p and p′ have the relation
p ≤0 p′ if p ≤ p′.
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Other Related Categories

Definition

For a category A, the opposite category Aop is a category with
the same objects as A but with the domain and codomain of each
arrow of A reversed. Every morphism a −! b in Aop corresponds
to a morphism b −! a in A or HomAop (a, b) = HomA(b , a). The
composition in Aop is given by the composition in A. In detail, if

a f // b
g

// c

are two composible morphisms in Aop , then there are two
composible morphisms in A

a b
f ′oo c.

g′
oo

The composition g ◦ f in Aop will correspond to the composition
f ′ ◦ g′ in A.
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Other Related Categories

Example

Relop is almost the same as Rel. (We will formulate what we
mean by “almost the same” later.) The objects are all sets. A
relation R ⊆ S × T is associated to the inverse relation
R−1 ⊆ T × S. Notice that this statement is not true for Set and
Par because not every function or partial function has an inverse.

Example

If (P,≤) is a preorder category then the opposite category has the
relation ≤op which is defined as p ≤op p′ if and only if p′ ≤ p. This
essentially turns the arrows around.
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Other Related Categories

Example

The category KMat has natural numbers as objects and a map
A : m −! n is a n by m matrix with entries in K. The category
KMatop has natural numbers as objects and a map A : m −! n is
a m by n matrix with entries in K. Every matrix A : m −! n in
KMat will correspond to the transpose matrix AT : n −! m in
KMatop .

Exercise
Show that f : a −! b in A is monic if and only if the corresponding
g : b −! a in Aop is epic.

Exercise
Show that A has an initial object if and only if Aop has a terminal
object.
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Other Related Categories
There is an important operation on categories. Just as we can take
two sets and form their Cartesian product, so we can take two
categories and form their Cartesian product.

Definition
Given categories A and B, there is a category which is called the
Cartesian product of A and B, written as A ×B. The objects are
pairs of objects (a, b) where a is an object of A and b is an object
of B. Morphisms in the category are pairs of morphisms
(f , g) : (a, b) −! (a′, b ′) where f : a −! a′ is in A and
g : b −! b ′ is in B. Composition is given “component-wise”, i.e.,
the composition of (f , g) : (a, b) −! (a′, b ′) and
(f ′, g′) : (a′, b ′) −! (a′′, b ′′) is

(f ′, g′) ◦ (f , g) = (f ′ ◦ f , g′ ◦ g) : (a, b) −! (a′′, b ′′).

(This identity is an instance of the “interchange law” which will be
discussed in Important Categorical Idea ??.) We leave it to the
reader to prove associativity of composition. The unit for (a, b) is
(ida , idb). The fact that this morphism works as an identity is
obvious.
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Foreshadowing

Chapter 2: Categories
Section 2:4: Mini-course: Basic Linear Algebra

The Objects: Vector Spaces
The Morphisms: Linear Transformations
Bases and Dimensions
Operations on Vector Spaces

We define vector spaces

We define linear transformations between vector spaces

Lots of examples and properties

How to make new vector spaces from old

Our focus is — as always — the morphisms, linear
transformations.
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Foreshadowing
Linear algebra is the study of directions, straight lines, and flat
spaces. The mathematical structures that describe such notions
are vector spaces. Functions that go from one vector space to
another are called linear transformations. The subject of linear
algebra are vector spaces and linear transformations. The
collection of vector spaces and linear transformations forms the
category Vect. This mini-course will explore the category of Vect
with special emphasis on the morphisms.

We are going to focus on complex vector spaces, CVect, which
are vector spaces associated to complex numbers. We require
such vector spaces later when we talk about quantum mechanics
and many of the mini-courses.

A small disclaimer. Linear algebra is an important field that is
associated with beautiful geometric ideas. There is no way we can
show you anything more than a birds-eye-view of the field. We
hope that this mini-course will whet your appetite to learn more
linear algebra.Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2:4: Mini-course: Basic Linear Algebra



The Objects: Vector Spaces
The objects of CVect are complex vector spaces.

Definition
Consider C, the field of complex numbers. A complex vector
space is an abelian group (V ,+, 0,−) (reminder: V is a set, + is
an associative, commutative binary operation with identity 0 and
inverse operation −) with a function · : C × V −! V which is called
scalar multiplication (or a C-action) on V. (A scalar is an
element of a field or simply a number.) The elements of V will be
called “vectors” and will correspond to the directions. The + and −
operations allow us to add and subtract directions. The scalar
multiplication operation permit us to lengthen or shorten the
directions. The · function must satisfy the following axioms.

The scalar multiplication respects the addition in the abelian
group: for all c in C and for all v , v′ in V,

c · (v + v′) = (c · v) + (c · v′).

The scalar multiplication respects the addition in the field: for
all c, c′ in C and for all v in V,

(c + c′) · v = (c · v) + (c′ · v).

The scalar multiplication respects the multiplication in the
field: for all c, c′ in C and for all v in V,

(cc′) · v = c · (c′ · v).

The scalar multiplication respects the unit of the field: for 1 in
C and for all v in V,

1 · v = v .
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The Objects: Vector Spaces

Example

There are many examples of complex vector spaces.

For any positive integers m and n, the set of m by n matrices
with elements in the field C has the structure of a vector
space. We denote this complex vector space as Cm×n. The
addition in this vector space is simply addition of matrices.
The negation operation multiplies every entry by −1. The zero
vector is the m by n matrix whose entries are all 0. Given a
matrix M and a scalar c ∈ C, the scalar multiplication c ·M is
the matrix M with all its entries multiplied by c. (Another way
of saying this is that for every m and n, the Hom set,
HomCMat(m, n), is a complex vector space.)

In particular, if n = 1, then Cm×1 = Cm is the set of all
m-element column vectors. This vector space shares the
same operations as Cm×n. Similarly, if m = 1 then C1×n is the
set of n-element row vectors. These examples are the core of
elementary linear algebra.

In particular, if m = 1 and n = 1, then C1 = C, the complex
numbers, forms a complex vector space.

The world’s smallest complex vector space is the set with just
the number 0. This is called the trivial vector space and we
denote it as 0. The operations are 0 + 0 = 0 and c · 0 = 0.

The collection, PolyC(m), of complex polynomials in one
variable where the highest degree is m or less forms a
complex vector space. The addition is regular addition of
polynomials. The negation of a polynomial is the polynomial
whose every term is negated. The 0 polynomial is
0 + 0x + 0x2 + · · ·+ 0xm. The scalar multiplication multiplies
every term by a complex number, i.e.,

c·(a0+a1z1+a2z2+· · ·+anzn) = ca0+ca1z1+ca2z2+· · ·+canzn.

The set, PolyC, of all polynomials with coefficients in the
complex numbers forms a complex vector space. The
operations are the same as in PolyC(m).

The set of all functions from N to C, denoted Func(N,C) or
CN, forms a complex vector space. The addition of two
functions f : N −! C and g : N −! C is the function
f + g : N −! C defined as (f + g)(n) = f(n) + g(n). The
negation of f : N −! C is −f : N −! C defined as
(−f)(n) = −(f(n)). The zero function is the function that takes
all natural numbers to 0. The scalar multiplication of c ∈ C with
f : N −! C is (c · f) : N −! C defined as (c · f)(n) = c(f(n)).

The set of all functions from the complex numbers to the
complex numbers forms a complex vector space denoted
Func(C,C) or CC. The operations are defined analogously to
the operations of Func(N,C).
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The Objects: Vector Spaces

Exercise

Let S be any set. Show that the set of all functions from S to C
forms a complex vector space.
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Central Idea

Important Categorical Idea

Hom Sets Inheriting Properties.

In a category A, if a and b are objects in A, then HomA(a, b)
will inherit many of the properties of b.

This simple fact arises over and over again.
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The Objects: Vector Spaces

Just as we can look at subsets of a set, we can look at subvector
spaces of a vector space.

Definition
A vector space W is a linear subspace or subvector space of
vector space V if W is a subset of V and

W is closed under addition: for all w,w′ in W, w + w′ is in W.

W is closed under scalar multiplication: for all c in C and w in
W, c · w is in W.

W has the zero vector: 0 is in W.
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The Objects: Vector Spaces

Example

Here are some examples of linear subspaces.

The trivial vector space, 0, is a linear subspace of every vector
space.

It is not hard to see that C is a linear subspace of Cm for any

m > 1 (identify c ∈ C as



c

0

0
...

0


.) Similarly, Cm is a linear

subspace of Cm×n (identify



c1

c2

c3

...

cm


as



c1 0 0 · · · 0

c2 0 0 · · · 0

c3 0 0 · · · 0
...
...
...
. . .

...

cm 0 0 · · · 0


.)

For every m and n with m ≤ n, PolyC(m) is a linear subspace
of PolyC(n). PolyC(m) is a linear subspace of PolyC.

Consider the subset of all matrices in Cm×m that contain only
zeros, with the possible exception along the diagonal. This is
a linear subspace of Cm×m.

Consider the subset FuncFin(N,C) of all functions f : N −! C
whose values are all 0 except for a finite subset of N. Such
functions form a linear subspace of Func(N,C).
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Linear Maps
As we have seen (Important Categorical Idea), in category theory
the morphisms are as important or even more important than the
objects.

Definition
Let V and W be vector spaces. A linear map or linear
transformation T from V to W, written T : V −! W is a set
function T : V −! W such that

T respects the addition operation: for all v , v′ ∈ V,

T(v + v′) = T(v) + T(v′).

(Notice that the two +’s are operations in two different vector
spaces. The one on the left is an operation in V and the one
on the right is an operation in W.)

T respects the scalar multiplication: for all c ∈ C and v ∈ V,

T(c · v) = c · T(v).
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Example

A few examples of linear maps.

If W is a linear subspace of V, then the inclusion map is a
linear transformation.

For vector spaces V and W, there is a simple linear
transformation, called the null map or zero map, N : V −! W
that takes every element of V to the 0 in W. That is, N(v) = 0.
If A is an m × n matrix with entries in C, then there is a linear
map TA : Cn −! Cm defined for V ∈ Cn as TA (V) = AV. This
is linear because

TA respects the matrix addition:

TA (V + V ′) = A(V + V ′) = AV + AV ′ = TA (V) + TA (V ′),

and
TA respects the scalar multiplication:

TA (c · V) = A(c · V) = c · (AV) = c · TA (V).

There is a linear transformation from Cm×n to Cn×m that is
called the transpose operation. This operation swaps the
element in the i, j position for the element in the j, i position.
We denote the transpose of the m by n matrix A as AT . The
definition is reduced to AT [i, j] = A [j, i]. For example, the
transpose operation works as follows:


a b c d e

f g h i j

k l m n o


T

=



a f k

b g l

c h m

d i n

e j o


.

The transpose is a linear transformation because:
The transpose respects addition:

(A +B)T [i, j] = (A +B)[j, i] = A [j, i]+B[j, i] = AT [i, j]+BT [i, j].

The transpose respects scalar multiplication:

(c · A)T [i, j] = (c · A)[j, i] = c · A [j, i] = c · AT [i, j].

The transpose changes column vectors to row vectors and
vice versa.

For every vector space V, there is a unique linear
transformation from V to the trivial vector space V −! 0.
Similarly, there is a unique linear map 0 −! V. This makes 0
a zero object in the category of vector spaces.
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Linear Maps

Theorem
Let T : V −! W be a linear map. Then T respects 0, i.e.,
T(0) = 0. Also T respects negation, i.e., T(−v) = −T(v).

Proof.
To show that T respects 0, notice that

T(0) = T(0 + 0) = T(0) + T(0).

Now subtract T(0) from both ends. This leaves 0 = T(0).
To show that T respects negation, notice that

0 = T(0) = T(v + (−v)) = T(v) + T(−v).

Now subtract T(v) from both ends of the equation. This leaves
−T(v) = T(−v). □
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Linear Maps

Exercise
Show that the composition of two linear maps is a linear map.
Moreover, show that this composition is associative.

Exercise
Show that for every vector space V, the identity function
IV : V −! V, which is defined for v ∈ V as IV(v) = v, is a linear
map. Show also that for T : V −! V ′, we have that
T ◦ IV = T = IV ′ ◦ T.

Copyright © 2024 Noson S. Yanofsky. All Rights Reserved. Chap. 2: Categories — Sec. 2:4: Mini-course: Basic Linear Algebra



Complex Vector Spaces

The previous two exercises bring us to the main definition of this
mini-course:

Definition

The collection of complex vector spaces and linear maps between
them forms a category CVect.
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The Objects: Vector Spaces

Remark

In the category Set, an element of a set S is determined by a map
from a terminal object to S, i.e., a map {∗} −! S. In the category
CVect, a vector of a vector space V is determined by a linear
map from C to V. (A map from the terminal object 0 in CVect to
V, i.e., 0 −! V just picks out the 0 vector in V, which is not very
helpful.) Any map f : C −! V is totally determined by where it
takes 1 ∈ C. In other words, f is defined by f(1) ∈ C. For any
c ∈ C, the value f(c) = f(c · 1) = c · f(1). In other words,
HomCVect(C,V) is isomorphic to V. However, the output of f is not
only f(1). Rather, the output is all the scalar multiples of f(1).
In particular, thinking of C as a complex vector space, we have that
all linear maps f : C −! C is determined by the value f(1). In other
words HomCVect(C,C) is isomorphic to C.
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The kernel and image of a linear transformation

For any linear map T : V −! W , there is a linear subspace of V ,
the kernel of T , and a linear subspace of W , the image of T

V

W

0

Im(T)

0

T

Ker(T)
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Kernels and Images

Definition

For linear map T : V −! W, the kernel of T, written Ker(T), is the
linear subspace of V consisting of those vectors that go to the zero
vector of W, i.e.,

Ker(T) = {v ∈ V : T(v) = 0}.

To see that the Ker(T) is a linear subspace of V, notice that

Ker(T) is closed under addition: if T(v) = 0 and T(v′) = 0,
then T(v + v′) = T(v) + T(v′) = 0 + 0 = 0,

Ker(T) is closed under scalar multiplication: if c is in C and
T(v) = 0, then T(c · v) = c · T(v) = c · 0 = 0, and

Ker(T) contains the zero vector: T(0) = 0.
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Kernels and Images

Definition

For linear map T : V −! W, the image of T, written Im(T), is the
linear subspace of W consisting of those vectors that are the
output of T, i.e.,

Im(T) = {w ∈ W : there exists a v ∈ V with T(v) = w}.

To see that the Im(T) is a linear subspace of W, notice that

Im(T) is closed under addition: if T(v) = w and T(v′) = w′,
then w + w′ = T(v) + T(v′) = T(v + v′) ,

Im(T) is closed under scalar multiplication: if c is in C and
T(v) = w, then c · w = c · T(v) = T(c · v), and

Im(T) contains the zero vector: T(0) = 0.
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Kernels and Images

Theorem
For a linear map T : V −! W, the following are equivalent: (i) T is
monic, (ii) T is an injection, and (iii) Ker(T) = {0}.

Proof.
The fact that monic is equivalent to injective is basically the same
proof as in Set. Rather then use the one-object set {∗}, use the
one-dimensional vector space C. If T : V −! W is an injection,
then since T(0) = 0, it is the only vector that goes to 0. Hence
Ker(T) = {0}. For the other way, assume that Ker(T) = {0} and
that T(x) = T(y). Then 0 = T(x) − T(y) = T(x − y). This means
that x − y is in the kernel of T . That means x − y = 0 and hence
x = y. □
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Linear Maps

Theorem
A linear map T : V −! W is epic if and only if T is a surjection.

Proof.
This is basically the same proof as in Set. Rather then use the
one-object set {∗}, use the one-dimensional vector space C. □
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Isomorphism

Definition
A linear map is an isomorphism if it is has an inverse. If there is
an isomorphism between two vector spaces, then the vector
spaces are called isomorphic.
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Isomorphism

Theorem
A linear map is an isomorphism if and only if it is monic and epic.

Proof.
If a linear map is an isomorphism, then use the inverse to show
that it is left and right cancelable. If it is monic then it is injective. If
it is epic then it is surjective. So there is a set theoretic inverse to
the map. It remains to show that inverse is linear. This follows from
the fact that the map is linear and its inverse “undoes” what the
map does. □
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Linear Combination

Given a set of elements of V , we can use the addition and scalar
multiplication operations to get other elements. (For convenience,
we will drop the · as the scalar multiplication and write cx for c · x.)

Definition
If x1, x2, x3, . . . are vectors in a vector space V and c1, c2, c3, . . . are
elements of C then

y = c1x1 + c2x2 + c3x3 + · · · .

is a vector of V and is called a linear combination of x1, x2, x3, . . ..
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Basis

Definition
A basis B = {b1, b2, b3, . . .} for a vector space V is a set of vectors
of V, such that every element of V can be written in exactly one
way as a linear combination of elements of B. That is, for every y
in V, there is a unique sequence of scalars c1, c2, c3, . . . such that

y = c1b1 + c2b2 + c3b3 + · · · .

In a sense, we can say that the elements of the basis “generate”
the entire vector space.
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Basis

Exercise
Let V be a vector space with bases B and B′. Show that B and B′

have the same number of elements.
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Basis

Definition
The dimension of a vector space is the cardinality of a bases. If a
vector space has a finite basis, then the dimension is written
dim(V).
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Basis

Example

Let us go through all the examples given in Example 55 of vector
spaces and describe particularly simple bases. Such simple bases
are called canonical bases. We also determine the dimension of
the vector space.

For Cm×n, the canonical basis consists of the mn matrices
where each matrix has a single 1 as an entry and all the other
entries are 0. In detail,the first three element of the basis look
like this

1 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0


,



0 1 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0


,



0 0 1 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0


and the last one is this

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1


.

The dimension is mn.

For Cm, a canonical basis is



1

0

0
...

0


,



0

1

0
...

0


,



0

0

1
...

0


, · · · ,



0

0

0
...

1


. The

dimension is m.

For C, the canonical basis is 1 and the dimension is 1.

The basis of the trivial vector space 0 is the empty set which
has no elements, and hence the dimension is 0.

For PolyC(m), the canonical basis is 1, z, z2, z3, . . . , zm. The
dimension is m + 1

For PolyC, the canonical basis is 1, z, z2, z3, . . . , zm, . . .. The
dimension is countably infinite.

For Func(N,C), the canonical basis consists of a function for
every m ∈ N, fm : N −! C which is defined as

fm(n) =


1 : m = n

0 : m , n.

The dimension is countably infinite. Every element
f ∈ Func(N,C) can be written as the sum

f =
∞∑

i=0

f(i)fi .

For Func(C,C), the canonical basis consists of functions for
every z ∈ C, fz : C −! C defined as

fz(c) =


1 : z = c

0 : z , c.

The dimension is uncountably infinite. Every element
f ∈ Func(C,C) can — in analogy to Equation (58) — be
written as the integral

f =
∫

z
f(z)fzdz.

(Its only an analogy, because these functions are not
integrable.)
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Linear Maps

The following theorem will have many consequences.

Theorem

Fundamental theorem of linear algebra or the rank-nullity
theorem. Let V and W be finite dimensional vector spaces. For
any linear map T : V −! W, we have the following:

dim(Ker(T)) + dim(Im(T)) = dim(V).
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Linear Map
This figure helps one “see” the theorem.

V

W

k1, k2, . . . , km

Im(T)

i′1, i
′
2, . . . , i

′
n

i1, i2, . . . , in

v

T(v)

T

Ker(T)

0

Bases for the kernel and image of a linear transformation.
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Linear Maps

Theorem

Let V and W be finite dimensional vector spaces. The vector
spaces V and W are isomorphic if and only if dim(V) = dim(W).
This means that for each positive integer m, all the vector spaces
of dimension m are isomorphic. We might choose the
representative vector space of dimension m as Cm.
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Operations on Vector Spaces
There are many ways of describing new vector spaces from
existing ones. We have already seen the notion of a subvector
space and an inclusion linear map. Let us examine several other
methods.
Let W be a vector space with subspaces V and V ′. We define the
addition of subspaces as

V + V ′ = {v + v′ : v ∈ V and v′ ∈ V ′}.

To see that this is, in fact, a subspace, notice that all the vectors
are elements of W and the addition and the scalar multiplication
are both inherited from W . In particular, V + V ′ is closed under
addition. The only thing that remains to be shown is that 0 is in
V + V ′. This can easily be seen because 0 ∈ V , 0 ∈ V ′ and
0 + 0 = 0.
Let V and V ′ be vector spaces with V ∩ V ′ = 0. If B is a basis of V
and B′ is a basis of V ′, then it is not hard to see that B ∪ B′ is a
basis of V + V ′. And hence, the dimension of
dim(V + V ′) = dim(V) + dim(V ′).
There are obvious inclusion linear maps incV : V −! V + V ′ and
incV ′ : V ′ −! V + V ′. These inclusion maps satisfy certain
properties which we will meet in the next chapter. Suffice it to say
(for now) that V + V ′ is a coproduct of V and V ′.
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Function Space

We saw that given sets S and T , the collection of all functions from
S to T is a set TS or HomSet(S,T). There is a similar idea for the
collection of all linear maps from one vector space to another.

Theorem
For any vector spaces V and W, the collection of all linear maps
from V to W, HomCVect(V ,W), is a vector space and is called the
function space.

The proof consists of showing that all operations are inherited from
W .
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blahblahblah
Notice that much of the structure of HomCVect(V ,W) was inherited
from W . This is another instance of Important Categorical Idea 5.
When a category has the property that the Hom sets are also
objects in the category, then the category is called a closed
category. We will meet this concept in depth in Chapter ?? and
Section ??.
In terms of dimension, suffice it to say that for finite dimensional
vector spaces

dim(HomVect(V ,W)) = dim(V) × dim(W).

Theorem 12 gives us many new examples of vector spaces. In
particular, take W to be the complex numbers, C, then
HomVect(V ,C) is a complex vector space. We call this the dual
space of V and write it as V∗. Remember the objects of V∗ are
linear maps from V to C. The operations are basically inherited
from C. Equation (167) tells us that
dim(V∗) = dim(V) × 1 = dim(V).
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