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HOMOLOGICAL KINDERGARTEN

Part 1. Homological kindergarten
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HOMOLOGICAL KINDERGARTEN

PROJECTIVE RESOLUTIONS

Blanket assumption: all functors are from modules to abelian groups:

F : ModpΛq ÝÑ Ab

and are additive.

Given a module M, an exact sequence

. . . ÝÑ P1 ÝÑ P0 ÝÑ M ÝÑ 0

(excluding M itself), where the Pi are projective, is called a projective
resolution of M.

THEOREM

Any two projective resolutions of M are homotopy equivalent.
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HOMOLOGICAL KINDERGARTEN

INJECTIVE RESOLUTIONS

Given a module M, an exact sequence

0 ÝÑ M ÝÑ I0 ÝÑ I1 ÝÑ . . .

(excluding M itself), where the I i are injective, is called an injective
resolution of M.

THEOREM

Any two injective resolutions of M are homotopy equivalent.
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HOMOLOGICAL KINDERGARTEN

NOMENCLATURE: DERIVED FUNCTORS

Given an additive functor F , apply it to a resolution. Since resolutions
are homotopically unique, the homology groups of the resulting
complex are unique up to isomorphism.

Projective resolutions Injective resolutions
Covariant F LiF R iF

Contravariant F RiF LiF

N.B. For a contravariant F , subscripts and superscripts are flipped.
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HOMOLOGICAL KINDERGARTEN

THE CASE i “ 0: L0F

Zeroth derived functors are of special interest to us:

F pP1q // F pP0q //

%%

L0F pMq //

D!λF pMq
��

0

F pMq

PROPOSITION

L0F is right-exact (i.e., preserves cokernels).

COROLLARY

λF : L0F ÝÑ F is an isomorphism if and only if F is right-exact.
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HOMOLOGICAL KINDERGARTEN

THE CASE i “ 0: R0F

F pMq

D! ρF pMq
�� $$

0 // R0F pMq // F pI0q // F pI1q

PROPOSITION

R0F is left-exact (i.e., preserves kernels).

COROLLARY

ρF : F ÝÑ R0F is an isomorphism if and only if F is left-exact.
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HOMOLOGICAL KINDERGARTEN

THE CASE i “ 0: A SUMMARY

Projective resolutions Injective resolutions

Covariant F L0F λF
ÝÑ F F ρF

ÝÑ R0F

Contravariant F F ρF
ÝÑ R0F L0F λF

ÝÑ F

The λF are isomorphisms if and only if F is right-exact;

The ρF are isomorphisms if and only if F is left-exact.
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HOMOLOGICAL KINDERGARTEN

QUESTION: WHY IS CASE i “ 0 INTERESTING?

Projective resolutions Injective resolutions

Covariant F L0F λF
ÝÑ F F ρF

ÝÑ R0F

Contravariant F F ρF
ÝÑ R0F L0F λF

ÝÑ F

Answer: because all arrows are universal:

the λF – with respect to natural transformations from right-exact
functors to F ,
the ρF – with respect natural transformations from F to left-exact
functors.
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HOMOLOGICAL KINDERGARTEN

THE UNIVERSAL PROPERTY OF λ

Rex

@

��

D !

||
L0F

λF // F

REMARK

This diagram shows that the subcategory of right-exact functors is
coreflective in the category of all additive functors and

λ is a coreflector, i.e., a counit of the adjunction ι % L0
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HOMOLOGICAL KINDERGARTEN

THE UNIVERSAL PROPERTY OF ρ

F
ρF //

@

��

R0F

D !||
Lex

REMARK

This diagram shows that the subcategory of left-exact functors is
reflective in the category of all additive functors and

ρ is a reflector, i.e., a unit of the adjunction R0 % ι
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HOMOLOGICAL KINDERGARTEN

AN INTRINSIC CHARACTERIZATION OF λ

LEMMA

If F is covariant (resp., contravariant), then λF : L0F ÝÑ F (resp.,
λF : L0F ÝÑ F) evaluates to an isomorphism on projectives (resp.,
injectives).

PROPOSITION

If F is covariant (resp., contravariant), then λF : L0F ÝÑ F (resp.,
λF : L0F ÝÑ F) is the unique natural transformation from a right-exact
functor to F which evaluates to an isomorphism on projectives (resp.,
injectives).
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HOMOLOGICAL KINDERGARTEN

AN INTRINSIC CHARACTERIZATION OF ρ

LEMMA

If F is covariant (resp., contravariant), then ρF : F ÝÑ R0F (resp.,
ρF : F ÝÑ R0F) evaluates to an isomorphism on injectives (resp.,
projectives).

PROPOSITION

If F is covariant (resp., contravariant), then ρF : F ÝÑ R0F (resp.,
ρF : F ÝÑ R0F) is the unique natural transformation from F to a
left-exact functor which evaluates to an isomorphism on injectives
(resp., projectives).
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HOMOLOGICAL KINDERGARTEN

DO WE ONLY NEED LEFT- AND RIGHT-EXACT

FUNCTORS?

REMARK

Since λF : L0F ÝÑ F evaluates to an isomorphism on projectives,

LiλF : LipL0F q ÝÑ LiF

is an isomorphism for all i .

REMARK

Since ρF : F ÝÑ R0F evaluates to an isomorphism on injectives,

R iρF : R iF ÝÑ R ipR0F q

is an isomorphism for all i .
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HOMOLOGICAL KINDERGARTEN

EXAMPLE: L0 OF THE COVARIANT HOM

EXAMPLE

F :“ pA, q, where A is finitely generated.

In this case, L0F λ
ÝÑ F is the canonical transformation

A˚ b ÝÑ pA, q

because it is an isomorphism on projectives and A˚ b is right-exact.

Hence
LipA, q » ToripA˚, q

for all i .
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HOMOLOGICAL KINDERGARTEN

EXAMPLE: R0 OF THE TENSOR PRODUCT

EXAMPLE

F :“ Ab , where A is finitely presented.

In this case, F ρ
ÝÑ R0F is the canonical transformation

Ab ÝÑ pA˚, q

because it is an isomorphism on injectives and pA˚, q is left-exact.

Hence
R ipAb q » ExtipA˚, q

for all i .
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HOMOLOGICAL KINDERGARTEN

RECOGNIZING L0F

Let F : Mod pΛq ÝÑ Ab be an additive covariant functor. The natural
transformation

F pΛq b τ // F

F pΛq bM
τM // F pMq

x bm � // F prmqpxq

where x P F pΛq, m P M, and rm : Λ ÝÑ M : λ ÞÑ λm, evaluates to the
canonical isomorphism on Λ. Whence
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HOMOLOGICAL KINDERGARTEN

RECOGNIZING L0F

PROPOSITION

If F commutes with coproducts, then τ : F pΛq b ÝÑ F evaluates to
an isomorphism on projectives, and therefore

F pΛq b » L0F

This explains the example with L0pA, q.
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HOMOLOGICAL KINDERGARTEN

FIRST APPLICATIONS: RECOGNIZING THE TENSOR

PRODUCT

As a consequence,

THEOREM (EILENBERG, WATTS)

If a covariant functor F commutes with coproducts and is right-exact,
then F » F pΛq b .
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HOMOLOGICAL KINDERGARTEN

RECOGNIZING R0F

Let F : Mod pΛq ÝÑ Ab be an additive contravariant functor. The
natural transformation

F σ // p ,F pΛqq

F pMq
σM // pM,F pΛqq

x � //
ˆ

m � // F prmqpxq
˙

where x P F pMq, m P M, and rm : Λ Ñ M : λ ÞÑ λm, evaluates to the
canonical isomorphism on Λ. Whence
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HOMOLOGICAL KINDERGARTEN

RECOGNIZING R0F

PROPOSITION

If a contravariant functor F converts coproducts into products, then
σ : F ÝÑ p ,F pΛqq evaluates to an isomorphism on projectives, and
therefore

p ,F pΛqq » R0F
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HOMOLOGICAL KINDERGARTEN

FIRST APPLICATIONS: RECOGNIZING THE

CONTRAVARIANT Hom

As a consequence,

THEOREM (EILENBERG, WATTS)

If a contravariant functor F converts coproducts into products and is
left-exact, then F » p ,F pΛqq.
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STABILIZATION OF ADDITIVE FUNCTORS

Part 2. Stabilization of additive functors
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STABILIZATION OF ADDITIVE FUNCTORS

INJECTIVE STABILIZATION OF AN ADDITIVE FUNCTOR

Let F : Λ-Mod Ñ Ab be an additive covariant functor on left modules.

DEFINITION

The injective stabilization F of F is defined by the exact sequence

0 ÝÑ F ÝÑ F ρF
ÝÑ R0F

REMARK

F is additive as a subfunctor of the additive functor F .
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STABILIZATION OF ADDITIVE FUNCTORS

COMPUTING THE INJECTIVE STABILIZATION: THREE

EASY STEPS

Let B be a left Λ-module. To compute F pBq:

embed B in an injective: 0 Ñ B ι
Ñ I,

apply F
compute Ker F pιq.

Thus, F pBq is defined by the exact sequence

0 ÝÑ F pBq ÝÑ F pBq
F pιq
ÝÑ F pIq
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STABILIZATION OF ADDITIVE FUNCTORS

INJECTIVE STABILIZATION OF THE TENSOR PRODUCT

Change of notation: The injective stabilization of F :“ Ab will be
denoted by A

ã

b . Thus

A
ã

bB “ pA
ã

b qpBq

Terminology: A is inert, B is active.

EXAMPLE

Take Λ :“ Z. Then:

Z
ã

bQ{Z “ 0 as Q{Z is injective (or Z is projective);

Z
â

bQ{Z “ Q{Z (just tensor 0 Ñ ZÑ Q with Q{Z).

N.B. The harpoon always points to the active variable.
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STABILIZATION OF ADDITIVE FUNCTORS

INJECTIVE STABILIZATION OF THE TENSOR PRODUCT

EXAMPLE

If A is finitely presented, then (A-B, 1969)

A
ã

b » Ext1pTrA, q

DEFINITION (FOR LATER USE)

spAq :“ A
ã

bΛ Λ
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STABILIZATION OF ADDITIVE FUNCTORS

PROJECTIVE STABILIZATION OF HOM(A, )

Similar definitions apply to the remaining three choices for λ and ρ.

EXAMPLE

Let A be a left Λ-module. The projective stabilization of pA, q is just
pA, q, the Hom modulo projectives.

If A is finitely presented, then

pA, q » Tor1pTr A, q
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STABILIZATION OF ADDITIVE FUNCTORS

PROJECTIVE STABILIZATION OF HOM( , B)

EXAMPLE

Let B be a left Λ-module. The projective stabilization of p ,Bq is just
p ,Bq, the Hom modulo injectives (sic!).

DEFINITION (FOR LATER USE)

qpBq :“ pΛ,Bq
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STABILIZATION OF ADDITIVE FUNCTORS

STABILIZATION: SUMMARY

Projective resolutions Injective resolutions

Covariant L0F λF
ÝÑ F ÝÑ p© i© ÝÑ F ρF

ÝÑ R0F

Contravariant i© ÝÑ F ρF
ÝÑ R0F L0F λF

ÝÑ F ÝÑ p©

Projective stabilization = the cokernel of the counit λ.
Injective stabilization = the kernel of the unit ρ.
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AN EXTENSION OF THE AUSLANDER-REITEN FORMULA

Part 3. An extension of the Auslander-Reiten
formula
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AN EXTENSION OF THE AUSLANDER-REITEN FORMULA

AN AUSLANDER-REITEN FORMULA FOR ARBITRARY

MODULES

Let Λ be an algebra over a commutative ring R (can be Z). Choose an
injective R-module J and let DJ :“ HomRp ,Jq.

PROPOSITION

The tensor – covariant Hom adjunction induces an isomorphism

DJpA
ã

bBq » HompB,DJpAqq,

functorial in A and B.
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AN EXTENSION OF THE AUSLANDER-REITEN FORMULA

THE ORIGINAL AUSLANDER-REITEN FORMULA

REMARK

If A in DJpA
ã

bBq » HompB,DJpAqq is finitely presented, then:
A is projectively equivalent to Tr A1 for some A1,

Tr A1
ã

bB is well-defined (tensoring by a projective is exact),
DJpTr A1q is determined uniquely modulo injectives,

A
ã

b » Ext1pTr A, q » Ext1pA1, q.
This yields an isomorphism

DJ Ext1pA1,Bq » HompB,DJ Tr A1q

which is the original Auslander-Reiten formula.

ALEX MARTSINKOVSKY AND JEREMY RUSSELL STABILIZATION OF ADDITIVE FUNCTORS DECEMBER 5, 2018 35 / 80



AN EXTENSION OF THE AUSLANDER-REITEN FORMULA

SPECIALIZING TO B :“ Λ

Setting B :“ Λ, we have

DJpA
ã

bΛq » HompΛ,DJpAqq

or, using earlier notation :

DJpspAqq » qpDJpAqq
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

Part 4. Asymptotic stabilization of the tensor
product
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

TATE (CO)HOMOLOGY WITHOUT COMPLETE

RESOLUTIONS

Cohomology Homology
VipM,Nq VipM,Nq
BipM,Nq ?

MiF MiF

Q: Is there a homological counterpart of Buchweitz’s construction?
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

BUCHWEITZ’S CONSTRUCTION

Let Λ be a ring. Given Λ-modules M and N, we have a sequence of
maps of abelian groups

pM,Nq ÝÑ pΩM,ΩNq ÝÑ pΩ2M,Ω2Nq ÝÑ . . .

DEFINITION

B0pM,Nq :“ lim
ÝÑ
kě0

pΩkM,ΩkNq

Key point: each term in the defining sequence is a value of the
projective stabilization of the covariant Hom functor: pΩkM, qpΩkNq.
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

DUALIZING BUCHWEITZ’S CONSTRUCTION

Stable cohomology Stable homology
Covariant Hom b

Projective stabilization Injective stabilization
Ω on the active (co) side Σ on the active side

Ω on the inert (contra) side Ω on the inert side

As a result, we have a sequence of abelian groups

. . . Ω2A
ã

b Σ2B ΩA
ã

b ΣB A
ã

b B

but, so far, no maps.
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

BUILDING MAPS

To define maps, tensor a syzygy sequence for A with a cosyzygy
sequence for B. The connecting homomorphism from the snake
lemma induces a map ΩA

ã

b ΣB ÝÑ A
ã

bB.

Iteration yields the desired sequence of maps:

. . . ÝÑ Ω2A
ã

b Σ2B ÝÑ ΩA
ã

b ΣB ÝÑ A
ã

b B
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

ASYMPTOTIC STABILIZATION OF THE TENSOR

PRODUCT

DEFINITION

The asymptotic stabilization TnpA, q of the left tensor product in
degree n with coefficients in the right Λ-module A is defined by

TnpA, qpBq :“ TnpA,Bq :“ lim
ÐÝ

k ,k`ně0
Ωk`nA

ã

bΣkB

This produces a homological counterpart to Buchweitz’s construction.
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

COMPARING V AND T

THEOREM

Let A be a right Λ-module. For each l P Z, there is an epimorphic
natural transformation

κl : VlpA, q� TlpA, q

ALEX MARTSINKOVSKY AND JEREMY RUSSELL STABILIZATION OF ADDITIVE FUNCTORS DECEMBER 5, 2018 43 / 80



ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

COMPARING V, T, AND M

THEOREM

For any module A, there is a commutative diagram of connected
sequences of functors

V‚pA, q

κ

xxxx

θ

'' ''
T‚pA, q

» //

λ &&

M‚pTorpA, qq

τ
ww

TorpA, q

where the horizontal arrow is an isomorphism.
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

WHAT IS Kerκ? A CONJECTURE

The comparison map κ : V‚pA, q ÝÑ T‚pA, q appears to be an
algebraic analog of the comparison map from Steenrod-Sitnikov
homology to Čech homology. That map is also epic, and its kernel is
given by the first derived limit. Based on this analogy, we had

CONJECTURE (2014)

Kerκ is given by the first derived limit.
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ASYMPTOTIC STABILIZATION OF THE TENSOR PRODUCT

A POSITIVE ANSWER

The conjecture is true by the following recent result

THEOREM (I. EMMANOUIL AND P. MANOUSAKI, 2017)
There is an exact sequence

0 ÝÑ lim
ÐÝ

i

1 Tor‚`i`1pA,Σi q ÝÑ V‚pA, q ÝÑ M‚pTorpA, qq ÝÑ 0
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DEFINITION OF TORSION

Part 5. Definition of torsion
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DEFINITION OF TORSION

WHAT ARE WE TRYING TO DEFINE?

For any module over any ring, define the torsion submodule,
extending classical torsion over commutative domains.

For any module over any ring, define the cotorsion quotient
module.
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DEFINITION OF TORSION

CLASSICAL TORSION

Classical torsion is defined over commutative domains:

T pAq :“ ta P A | Dr P R ´ t0u, ra “ 0u

It can be extended to arbitrary rings in more than one way, but we want
to simultaneously generalize the notion of 1-torsion.
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DEFINITION OF TORSION

WHAT IS 1-TORSION?

The 1-torsion tpAq of a module A is the kernel of the canonical
evaluation map

eA : A ÝÑ A˚˚ : a ÞÑ pFa : f ÞÑ f paqq

Thus tpAq is determined by the exact sequence

0 ÝÑ tpAq ÝÑ A ÝÑ A˚˚

It is defined for any module over any ring and consists of those
elements of A on which every linear form on A vanishes. Moreover:

LEMMA

If R is a commutative domain and A is finitely generated, then

T pAq “ tpAq

ALEX MARTSINKOVSKY AND JEREMY RUSSELL STABILIZATION OF ADDITIVE FUNCTORS DECEMBER 5, 2018 50 / 80



DEFINITION OF TORSION

WARNING: 1-TORSION CAN BE BIG

For infinite modules, 1-torsion need not coincide with classical torsion.

EXAMPLE

Let R :“ Z and A :“ Q. Then

T pQq “ t0u but tpQq “ Q
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DEFINITION OF TORSION

1-TORSION

However, 1-torsion is a ubiquitous concept:

Stable module theory (Auslander - Bridger, 1969);
PDE and constructive aspects of linear control systems (Oberst,
et al. 1990, . . . );
Linkage of algebraic varieties (M - Strooker, 2004);
Algebraic aspects of a question of Reiffen - Vetter (M, 2010).
Local algebraic geometry, singularity theory, local cohomology, . . .
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DEFINITION OF TORSION

PRECISE STATEMENT OF THE PROBLEM

Problem Find a common generalization of:
classical torsion for arbitrary modules over commutative domains,

and

1-torsion for finitely presented modules over arbitrary rings.

The new definitions should work for arbitrary modules over arbitrary
rings.
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DEFINITION OF TORSION

CLASSICAL TORSION VIA LOCALIZATION

Let K be the field of fractions of the commutative domain R and

0 ÝÑ R ÝÑ K

the canonical embedding.

Tensoring a module A with this map, we have the localization map

`A : A – Ab R Ñ AbR K

LEMMA

T pAq “ Ker `A.

Observation: In this construction, K is the injective envelope of the
ring.
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DEFINITION OF TORSION

THE DEFINITION

Let Λ be a ring, A a right Λ-module, and

0 ÝÑ Λ ÝÑ I

the injective envelope of Λ viewed as a left module over itself.

DEFINITION

The torsion of A is defined by the exact sequence

0 ÝÑ spAq ÝÑ Ab Λ ÝÑ Ab I
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DEFINITION OF TORSION

WE HAVE WHAT WE HAVE ASKED FOR

PROPOSITION

If Λ is a commutative domain, then s coincides with classical
torsion.

On finitely presented modules over any Λ, s coincides with
1-torsion.
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DEFINITION OF TORSION

FIRST PROPERTIES OF s

THEOREM

s is a subfunctor of 1-torsion: s Ď t.

s preserves filtered colimits (and hence coproducts).

s is the largest subfunctor of t that preserves filtered colimits.

s is a radical, i.e., spA{spAqq “ t0u for any module A.

spAq “ 0 for any flat module A.
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DEFINITION OF TORSION

FURTHER PROPERTIES OF s

PROPOSITION

The following conditions are equivalent:

A) s is the zero functor (on right modules);

B) s preserves epimorphisms;

C) ΛΛ is absolutely pure;

D) Λ is left FP-injective, i.e., Ext1ΛpM,Λq “ t0u for all finitely
presented left Λ-modules M.

In particular, if Λ is selfinjective on the left, then s is the zero functor.
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DEFINITION OF TORSION

s AND THE REJECT OF FLATS

Let RejpA,Fq be the reject of the class F of flats in the right module A,
and rejpA,Fq its restriction to finitely presented modules. Then

s Ď Rejp ,Fq Ď t

Restricting to finitely presented modules, we get equalities. Whence

PROPOSITION

s »
ÝÑ

rejp ,Fq, i.e., the torsion functor is isomorphic to the colimit
extension of the reject of flats restricted to finitely presented modules.
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DEFINITION OF TORSION

EXERCISE

EXERCISE

Most of the basic results about classical torsion carry over, in one form
or another, to the new setting. State such results and prove them.
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DEFINITION OF COTORSION

Part 6. Definition of cotorsion
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DEFINITION OF COTORSION

HOW DO WE DEFINE COTORSION?

In the absence of a classical prototype, we try and dualize the
definition of torsion.

Start with a simple question:

Why is spAq a subset of A?

ALEX MARTSINKOVSKY AND JEREMY RUSSELL STABILIZATION OF ADDITIVE FUNCTORS DECEMBER 5, 2018 62 / 80



DEFINITION OF COTORSION

WHY IS spAq A SUBSET OF A

The answer is obvious: because, by definition, spAq is a subset of
Ab Λ and there is a canonical isomorphism

Ab Λ
–
ÝÑ A

Question Is there a “dual” canonical isomorphism?

Answer Yes, there is:

HompΛ,Cq –
ÝÑ C
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DEFINITION OF COTORSION

DUALIZING THE DEFINITION OF TORSION

The torsion of A was defined as the value of the injective stabilization
of the tensor product functor Ab on Λ.

Dually, we define the cotorsion of C as the value of the projective
stabilization of the contravariant Hom functor Homp ,Cq on Λ.
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DEFINITION OF COTORSION

DEFINITION OF COTORSION

DEFINITION

Let C be a (left) Λ-module. The cotorsion quotient module of C is

qpCq :“ Homp ,CqpΛq “ HompΛ,Cq

Thus q “ HompΛ, q is a quotient of the identity functor.
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DEFINITION OF COTORSION

FIRST OBSERVATIONS

The short exact sequences

0 ÝÑ IpΛ,Cq ÝÑ pΛ,Cq ÝÑ pΛ,Cq ÝÑ 0

give rise to a short exact sequence of endofunctors on Λ-Mod

0 ÝÑ q´1 ÝÑ 1 ÝÑ q ÝÑ 0

q preserves epimorphisms.

q is finitely presented:

pI, q
pι, q
ÝÑ pΛ, q ÝÑ q ÝÑ 0
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DEFINITION OF COTORSION

TRACE OF INJECTIVES COMES INTO PLAY

LEMMA

Under the canonical isomorphism

pΛ,Cq – C : f ÞÑ f p1q,

IpΛ,Cq identifies with TrpI,Cq, the trace in C of the class I of injective
Λ-modules.

PROPOSITION

q is a coradical, i.e., qpq´1pCqq “ t0u for any C.
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DEFINITION OF COTORSION

COTORSION MODULES

DEFINITION

The module C is cotorsion if C Ñ qpCq is an isomorphism. In other
words, C is cotorsion if no map Λ Ñ C factors through an injective.
Equivalently, TrpI,Cq “ t0u.

EXAMPLE

Any PID which is not a field, viewed as a module over itself, is
cotorsion (as it has no nonzero divisible elements).
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DEFINITION OF COTORSION

COTORSION-FREE MODULES

DEFINITION

The module C is cotorsion-free if C Ñ qpCq is the zero map, i.e., any
map Λ Ñ C factors through an injective. Equivalently, TrpI,Cq “ C.

EXAMPLE

Any injective module is cotorsion-free.

Obviously, t0u is the only module which is cotorsion and cotorsion-free.
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DEFINITION OF COTORSION

EXPECTED PROPERTIES HOLD

EXERCISE

Formulate and prove basic properties of cotorsion (Hint: dualize the
properties of torsion).
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

Part 7. The Auslander-Gruson-Jensen
functor and friends
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

THE AUSLANDER-GRUSON-JENSEN FUNCTOR

The Auslander-Gruson-Jensen duality, discovered by Auslander and
independently by Gruson and Jensen, is a pair of exact contravariant
functors

fppmodpΛopq,Abq

D

((
fppmodpΛq,Abq

D

hh

each of which interchanges the tensor product and the Hom functor
when the fixed argument is a finitely presented module.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

AN EXTENSION OF THE AGJ FUNCTOR

There is an exact contravariant functor

DA : fppMod pΛopq,Abq Ñ pmodpΛq,Abq

defined by
DA :“ R0pε ˝ wq,

where ε is the tensor embedding

ε : Mod pΛopq Ñ pmodpΛq,Abq : M ÞÑ bM

and w is the defect functor. For any representable functor pM, q

DApM, q “ bM

As is shown by Dean-Russell (2016), the functor DA is completely
determined by this property and by being exact.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

THE AGJ FUNCTOR AND FRIENDS

THEOREM (S. DEAN - J. RUSSELL, 2016)

The functor

DA : fppMod pΛopq,Abq Ñ pmodpΛq,Abq

admits a left adjoint DL and a right adjoint DR, both of which are fully
faithful. The functors DR and DA restrict to the AGJ duality D on the full
subcategories of pp-functors.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

GENERAL PICTURE

The foregoing statement is part of the following diagram of functors

fppMod pΛopq,Abq pmodpΛq,Abq

Mod pΛopq

ε
evΛ

R0εw

Y

L0Y

DA

DL

DR

ALEX MARTSINKOVSKY AND JEREMY RUSSELL STABILIZATION OF ADDITIVE FUNCTORS DECEMBER 5, 2018 75 / 80



THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

SENDING COTORSION TO TORSION

THEOREM

For any module B
DAHompB, q »

ã

bB

COROLLARY

Spcializing to B :“ Λ, we have

DApqq » s

(dexterity changes). Equivalently,

DApTrpI, q´1q »
ÝÑ

rejp ,Fq
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

GOING BACK: SENDING TORSION TO COTORSION

PROPOSITION

For any pure injective left Λ-module M,

HompM, q » DLp
ã

bMq

COROLLARY

If ΛΛ is pure injective, then q » DLpsq.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

GOING BACK: ANOTHER OPTION

THEOREM

Suppose the injective envelope of Λ is finitely presented. Then the
notions of torsion and cotorsion are dual. More precisely, the right
adjoint

DR : pmodpΛq,Abq Ñ fppMod pΛopq,Abq

of DA carries the torsion functor to the cotorsion functor, i.e.,

DRpsq » q

COROLLARY

Let Λ be an artin algebra. Then DRpsq » q.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

THE AUSLANDER-REITEN FORMULA FOR ARBITRARY

MODULES, AGAIN

The foregoing isomorphisms are between functors, with no apparent
connections between their arguments. We can do better (slide 36):

DJpspAqq » qpDJpAqq

Thus, the dual of the torsion of a module is the cotorsion of the dual of
the module.
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THE AUSLANDER-GRUSON-JENSEN FUNCTOR AND FRIENDS

EXCHANGE FORMULA

EXAMPLE

Let Λ be any ring, R :“ Z, and J :“ Q{Z. Set p q` :“ DJp q. Then

spAq` » qpA`q
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