
Solutions to Selected Exercises of
Theoretical Computer Science

for the
Working Category Theorist

Noson S. Yanofsky*

October 27, 2019

Feel free to email me more solutions. I will add other solutions to this
document (with your name attached to it.)

Exercise 2.1.3. For any object f : b−! a of A/a, f is the unique morphism
to the identity that makes the triangle commute.

Exercise 2.1.7. This is similar to the solution to Exercise 2.1.3.

Exercise 3.1.2.

• Length : String−!Nat.

• Desc : Nat−! String.

• Lines : String−!Nat.

Exercise 3.1.4.

• MaxMeanMin : Nat∗−!Nat×Real×Nat.
*Department of Computer and Information Science, Brooklyn College CUNY, Brooklyn,

N.Y. 11210. And Computer Science Department, The Graduate Center CUNY, New York, N.Y.
10016. e-mail: noson@sci.brooklyn.cuny.edu

1

• Eval : NatNat ×Nat−!Nat.

• LastTwinPrimes : Nat× Nat −! Bool. The interesting part of this
problem is that it is unknown if there is a last twin prime or if there
are an infinite number of them.

Exercise 3.1.7. The terminal type ∗ because T ×∗= T =∗×T.

Exercise 3.1.11.

• Matrix multiplication is a totally computable function.

• We will see in Example 4.2.3 that this is not in TotCompFunc. One
can gain an intuition about this from the following. We might try a few
inputs to the program and see if any of them halt. If they do, then we
know the domain is not empty. But how are we to know if the domain
is totally empty? We would have to go through an infinite number of
possible inputs. This shows that the obvious way of determining if the
domain of a function is empty does not work. Perhaps there is a cleverer
way of determining this function. We will mathematically prove later
that no such clever method exists.

• This function is totally computable. It is defined as: x .−y= Max{x−y,0}.

Exercise 3.2.6.

(i) The word is presented as a single string of a’s and b’s. First the Turing
machine goes through the entire input to make sure that all the a’s
are before the b’s. If not, reject. If it is in the right form, start at the
beginning of the input and for every a, add one to a counter on a work
tape. When you get to the b’s, decrement the counter. At the end of the
input, if the counter is zero, accept the word, otherwise, reject the word.

(ii) The number n is on the input tape. Use a standard method to calculate
bpnc. Place the result on a work tape. Then systematically go from
m = 2 till m = bpnc. If any m evenly divides into n reject the input as
not prime, otherwise accept as prime.

2

(iii) nm : Nat×Nat−!Nat can be done by performing a loop m times and
multiplying by n in every loop (we learned how to multiply in Example
3.2.5.) In detail, use two work tapes. One tape will be a counter for the
loop and the other will have the product. The computer then performs
the following program.

(a) Set counter tape to m

(b) Set product tape to 1

(c) If counter= 0 goto step 7

(d) Multiply n times the product

(e) Decrement the counter

(f) Goto Step 3

(g) Transfer the product to the output tape

Exercise 3.2.7. Assume that T1 has t1 tapes and T2 has t2 tapes. Assume
Q1 is the set of states of T1 and Q2 is the set of states of T2. The tensor of the
two machines has Q1×Q2 as the set of states. The transition function will be
given as follows:

δ((qi, q j); x1, x2, . . . xt1+t2)= ((qi′ , q j′); y1, y2, . . . , yt1+t2 ;D1,D2, . . . ,Dt1+t2)

if and only if

δ1(qi; x1, x2, . . . xt1)= (qi′ ; y1, y2, . . . , yt1 ;D1,D2, . . . ,Dt1)

and

δ2(q j; xt1+1, xt1+2, . . . xt1+t2)= (q j′ ; yt1+1, yt1+2, . . . , yt1+t2 ;Dt1+1,Dt1+2, . . . ,Dt1+t2)

where D i ∈ {L,R}.

Exercise 3.2.10. In general, for every function in CompString, there are
many Turing machines/programs that can compute it.

Exercise 3.3.7.

3

Zero Function Successor Function Projector Functions

1. Y1 =Y1 −1

2. If Y1 , 0
Goto 1

1. Y1 = X1

2. Y1 =Y1 +1

1. Y1 = X i

Exercise 3.3.8.

Composition Recursion

Assume that f1, f2, . . . , fn and
g are computed by programs
F1,F2, . . . ,Fn, and G, then the
following program will compute
function h.

1. W1 = F1(X1, X2, . . . , Xm)

2. W2 = F2(X1, X2, . . . , Xm)

3.
...

4. Wn = Fn(X1, X2, . . . , Xm)

5. Y1 =G(W1,W2, . . . ,Wn)

Assume f and g are computed
by programs F and G, then the
following program will compute
function h.

1. Y1 = F(X1, X2, . . . , Xm)

2. If Xn+1 = 0 goto 6

3. Y1 =G(X1, . . . , Xm,Y1)

4. Xn+1 = Xn+1 −1

5. Goto 2

6. Stop.

and

4

µ-minimization

1. Y1 = 0

2. W1 = F(X1, ..., Xm,Y1)

3. If W1 = 0 goto 6

4. Y1 =Y1 +1

5. Goto 2

6. Stop

Exercise 3.3.11.

Sign Distance

sg(0)= 0

sg(s(x))= 1.
|x− y| = (x− y)+ (y− x).

Remainder

rem(x,0)= 0

rem(x, s(y))= (rem((x, y)+1)∗ (sg(|x− (rem(x, y)+1)|).

Exercise 3.3.14. f −1(x)=µy[f (y)= x].

Exercise 3.5.7. This falls out of the definition of equivalence. Two {Ψ}m
n are

logically equivalent if they describe the same computable function.

Exercise 4.3.1. Send the input to the query tape and then call the oracle.

Exercise 4.3.2. Rather than using the oracle, we can just put in a com-
putable subroutine that computes the function.

5

Exercise 4.3.3. Let T be the machine that computes f and uses the g oracle.
Let T ′ be the machine that computes g using the h oracle. Make a new
machine T ′′ that computes f as follows: T ′′ should be like T, however, rather
than query the g oracle, it goes into a whole module that does what T ′ does
including call h.

Exercise 5.2.8. To go from the Subset sum problem to the knapsack problem
we take the given {s1, s2, . . . , sn} and make the sizes and the profits equal those
numbers. We also set the G = C.

6

