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Chapter 7

Other Fields of Theoretical
Computer Science

While computability theory and complexity theory are the central parts of
theoretical computer science, it is only the beginning. There are many other
parts of this fascinating, ever-expanding field.

7.1 Formal Language Theory

The limits of my language means the limits of my world.
Ludwig Wittgenstein

Tractatus 5.6

The idea behind formal language theory is that there is an intimate re-
lationship between the complexity of a machine and the complexity of the
language it understands. The more sophisticated the machine, the more so-
phisticated is the language it understands. One sees this in everyday life.
For example, a child’s language is not as sophisticated as an adult’s language
because the child lacks the learning and the experience of the adult. A more
educated adult will understand a more sophisticated language than a less
educated adult.

The Church-Turing thesis has taught us that all of our usual computa-
tional models are basically equivalent. Where are we going to find machines
of different levels of sophistication? We have to look at machines that are
weaker than Turing machines, register machines, and Boolean circuits. A
simple example of a weaker machine is a soda machine. Such a machine is
not very sophisticated. It understands the language of $1.35. The machine
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6CHAPTER 7. OTHER FIELDS OF THEORETICAL COMPUTER SCIENCE

takes nickels, dimes, and quarters till you reach 135 cents. Once the soda
machine sees that you have the right amount, it will shower you with its
blessings. In this section we examine various machines and their relation-
ship to associated languages.

First, some preliminaries about languages.

• An alphabet is a finite set of symbols denoted Σ. Examples are Σ =
{a,b, c, . . . , z}, Σ= {a,b}, or a favorite of computer science: Σ= {0,1}.

• For every Σ, a word is a sequence of symbols from the alphabet. For
Σ = {a, b, c, . . ., z}, some words are “cat” and “balderdash.” Words for
Σ = {a, b} are “bbbbab” and “ababab”. The set of words made of two
symbols is denoted Σ2. Words of n symbols are denoted Σn. The set of
all words is denoted Σ∗. While Σ is finite, Σ∗ is countably infinite.

• A language is a subset of all words. For example with Σ= {a, b, c, . . ., z}
we have English⊂Σ∗. French, Italian, and Spanish are other languages
for the same alphabet. For the alphabet Σ = {0,1,2, . . ., 9} we will look
at the language {w|w is a prime number}. For Σ = {a,b} we will look at
languages like {ambn|m > 0,n > 0} and compare them to {anbn|n > 0}. A
language is either finite or countably infinite.

• The set of all languages is the set of all subsets of words. In symbols
this is P (Σ∗) where P is the powerset function. There are uncountably
infinite many languages.

• We will mostly be interested in describing a class of languages which
is a subset of all languages. C ⊆ P (Σ∗). We will be looking at various
classes of languages that are described by computational devices of dif-
ferent power.

Understanding a language means determining which words are in the
language and which words are not.

Example 7.1.1. Some simple examples are needed. Let us think of numbers
as strings of digits.

• A typical first grader can determine the language {n ∈ N : n is even}.
This means that if we gave a number to a first grader, the child will be
able to say if the number is even or not.

• A slightly more complicated language that a fourth grader can deter-
mine is the language {n ∈N : n is prime}.
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• One can go to the extreme and ask about the language

{c ∈C | there exists a c′ such that |c′|2 > |c|2 and c′

violates the Riemann conjecture}.

As the Riemann conjecture has not been proven or disproven, no one
can decide if any complex number is in this language.

ä
Since we deal with determining if a word is in a language or not, we will

only talk about machines that solve decision problems. The machines will not
have output tapes. After reading their input, the machines will either accept,
reject or go into an infinite loop ( i.e., answer “Yes,”“No”, or“Maybe”.) For
every machine M that computes a decision problem, there is a corresponding
language

L(M)= {w ∈Σ : machine M accepts word w} (7.1)

(i.e., a set of words that are accepted by that machine.) This is like a charac-
teristic function that goes from the set of all words to Bool. The characteristic
function describes those words that are in the language.

Researchers have described a four-level hierarchy of machines and their
languages that is called the Chomsky hierarchy. There is nothing com-
plete about this listing. There are many other types of machines and lan-
guages classes that can be described. However, convention dictates that we
describe these four types of machines and the languages they recognize. First
let us meet the machines. They are essentially Turing machines and Turing
machines with restrictions on how their input tapes and work tapes are used.

• Turing machines. We are already familiar with these machines and
we know that they can preform any task that a modern computer can
perform. They have unlimited amount of work space on the work tapes.
Notice also that they have the ability to enter an infinite loop.

• Linear bounded automata. These are like Turing machines but they
do not have unlimited work space. A linear bounded automaton does
not use more space on the work tape than the size of its input.

• Pushdown automata. These are nondeterministic Turing machines
where there is a single work tape which can be used as a primitive
type of memory called a “stack.” A stack is like a pile of plates in a
restaurant. Each memory place is like a plate. When you add a plate,
you “push” it onto the top of the stack. One can“pop” off an element from
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the memory by removing the top plate of the stack. We say that this
memory is “LIFO” which stands for “Last In, First Out”. The memory
is not random access. With a pushdown automata, one can not access
all the memory. There is also a restriction that the pushdown automata
read its input from left to right without reviewing.

• Finite automata. This is the simplest type of machine we will discuss.
In such machines, there are no work tapes and the input tapes are read
from left to right without the ability to write on them. This means there
is essentially no memory. The computer just reads the input once from
left to right. The machine can change states for every letter. When it
completes the input, if the final state is an accepting state, the word is
accepted. Otherwise it is rejected.

These machines are included in each other and the L function takes a
class of machines to a class of languages as follows

Machines // Languages

Turing Machines � // Recursively enumerable

Linear bounded automata
?�

OO

� // Context-sensitive
?�

OO

Pushdown automata
?�

OO

� // Context-free
?�

OO

Finite automata
?�

OO

� // Regular.
?�

OO

(7.2)

What are these language classes? Computer scientists describe languages
with grammars. These different languages can be described by different
types of grammars. Because of space restrictions we will not describe these
types of grammars. Rather, we will list off the language classes and describe
an instructive example of a languages in that class of languages. We will
start from the smallest language class.

• Regular languages. A typical language in this class is

{ambn|m,n ∈N }.

In order to determine if a word is in this language, a Turing machine
must read the data and make sure all the a’s come before all the b’s.
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Notice that the machine does not have to count how many a’s or b’s
there are. No memory is required.

• Context-free languages. A typical language in this class is

{ambm|m ∈N }.

In order to determine if a word is in this language, a Turing machine
must read the data and make sure all the a’s come before all the b’s. At
the same time, the machine must insure that the number of a’s is the
same as the number of b’s. This can be done by adding an element to
the stack every time one sees an a and removing an element from the
stack every time one sees a b. The word will be accepted if the word
ends with an empty stack. Notice that this language cannot be decided
by a finite automata because it demands some work tape.

• Context-sensitive languages. A typical language in this class is

{anbncn|n ∈N }.

There is no way that this language can be recognized with one stack.
One demands at least two stacks. Another way to decide this language
is to make sure the input is of the correct form and then, for each a
make sure there is a unique b and a unique c. This can be done with a
linear bounded automata but not a push-down automata.

• Recursively enumerable language. An example of a language that
is recursively enumerable is

{axby | Turing machine y on input x halts}.

To determine if a word is in this language, a Turing machine would
have to count how many a’s and b’s there are. The Turing machine
would then have to simulate Turing machine y on input x and see if it
halts. If it does halt, then the Turing machine will know that the word
is in the language. However, Turing machine y on input x can enter an
infinite loop and the computer will not be able to reject the word.

Many textbooks in theoretical computer science start with the definition
of a finite automaton and then “build up” to more powerful computers like
Turing machines. Since they start with this basic concept, there are many
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well-known ideas about finite automata. We would be remiss to have a text-
book on theoretical computer science and not spend some time on these ma-
chines.

As we saw above, a finite automaton is a simple machine. There is a beau-
tiful categorical way of viewing finite automata that we shamelessly adopt
from Section 5.3 of [25]. We begin by considering the category of finite graphs
and graph homomorphisms which is defined as

FinGraph=FinSet ∗ // // ∗. (7.3)

By finite graphs we mean that both the vertices (which will correspond to
the states) and the arrows (which will correspond to the alphabet) are finite.
There are many examples of finite graphs. Let us consider two of them.

Example 7.1.2. Let 20 be the graph with two objects and no arrows.
We will call the two objects s and t for reasons that will become obvious.
20 = s t . ä

Example 7.1.3. For each alphabet Σ there will be a graph Σ with only one
object. For every symbol in the alphabet, there will be one arrow from the
single object to itself. There will be one extra arrow that will be labeled with
the Greek letter epsilon ε. Such graphs might look like these

∗ 0ee1 99

ε

DD ∗
a



···
QQ

z

22

ε

��
(7.4)

ä
Consider the slice category 20/FinGraph. This is the category of finite

graphs with distinguished vertices which we will call s and t. (We have no
problem if s = t.) We call such graphs “doubly-pointed graphs.” A graph
homomorphism between doubly-pointed graphs must take s to s and t to t.
For every alphabet Σ, the graph Σ is also a doubly-pointed graph.

Finally we come to the definition of the category of finite automata.

Definition 7.1.4. For any alphabet Σ we define the category of finite au-
tomata with symbols in Σ as

FinAutΣ = (20/FinGraph)/Σ. (7.5)

Let us spell this out. The objects will be finite doubly pointed graphs and
every arrow will be labeled with a letter of Σ or ε. The morphisms will be
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graph homomorphisms that take s to s and t to t. The graph homomorphisms
are also required to take every arrow in one graph to an arrow with the same
label. We will describe a finite automaton as M = s oo // G oo // t . ^

Example 7.1.5. Here are some finite automata (we will show what languages
they describe in Example 7.1.6.)

(i) s t . (ii) s a // t where a is a letter in the alphabet.

(iii) s a // ∗ b // t where a and b are letters in the alphabet.

(iv) s a // ∗ ε // ∗ b // t where a and b are in the alphabet.

(v) s ε // ∗

a

�� ε // t

(vi) s ε // ∗

a

�� ε // ∗

b

�� ε // t (vii) s ε // ∗

a

��

b

ZZ
ε // t

(viii) ∗ a // ∗
ε

��
s

ε
??

ε
��

t

∗
b
// ∗

ε

??

(ix) ∗ a // ∗
ε

��

b

��

s

ε
??

ε
��

t

∗
b
// ∗

ε

??

b

WW

ä

A finite automaton describes the words in a regular language. The words
are the paths from s to t in the finite automaton. If at any vertex there is an
arrow with an ε then the path can cross that arrow for free. Categorically,
we can describe the set of words of a Turing machine by using the adjunction
between small categories and graphs. For every finite graph G there is a free
category Free(G) which has the same objects as G. The arrows are finite
composable sequences of arrows of G. The Free functor can be extended to
the slice and coslice categories and hence to FinAutΣ. The language of the
finite automaton M is

L(M)= HomFree(M)(s, t). (7.6)

This, in fact, describes a functor L : FinAutΣ−!Regular.

Example 7.1.6. Let us determine what languages are described by the finite
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automata of Example 7.1.5.
(i) The empty language. There are no words in this language.
(ii) This finite automaton describes the language that consists of one word

a. That is, the language {a}. (iii) The language {ab}.
(iv) The language {ab}. The point here is that the ε does not make a dif-

ference. (v) {am : m ∈N }.
(vi) {ambn : m,n ∈N }. (vii) The language is any word. That is {a,b}∗.
(viii) {a}∪ {b}= {a,b}. (ix) {abm : m ∈N }∪ {b2t+1 : t ∈N }. ä
There are three operations that one can perform on the objects in the

category FinAutΣ.

• Concatenation operation. Given finite automata

s oo // G oo // t and s′ oo // G′ oo // t′ ,

we can construct the finite automaton

s oo // G oo // t ε // s′ oo // G′ oo // t′. (7.7)

If L and L′ are the languages that correspond to G and G′ respectively,
then the language that corresponds to the concatenation of these finite
automata corresponds to L ◦L′ = {w : w = w1w2,w1 ∈ L,w2 ∈ L′}.

• Union operation. Given finite automata

s oo // G oo // t and s′ oo // G′ oo // t′ ,

we can construct the finite automaton

s oo // G oo // t
ε

  
s′′

ε

??

ε
��

t′′.

s′ oo // G′ oo // t′
ε

??

(7.8)

If L and L′ are the languages that correspond to G and G′ respectively,
then the language that corresponds to the union of G and G′ corre-
sponds to L∪L′.
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• Star Operation. Given finite automaton s oo // G oo // t we can
construct the finite automaton

s′
ε //

ε

%%
s oo // G oo // t ε // t′.

ε

ee (7.9)

If L is the language that corresponds to G, then the language that corre-
sponds to the star of g corresponds to L∗ which contains concatenations
of words in L.

These operations generate the category of finite automata.

Theorem 7.1.7. Kleene’s Theorem. Every object in the category FinAutΣ
is equivalent to some finite automaton that is generated by the empty lan-
guage, or the single letters and the operations of union, concatenation, and
the star operation. F

While this is a nice categorical way to see finite automata, it is not the
standard definition. The usual definition is as follows.

Definition 7.1.8. A deterministic finite automaton is a 5-tuple
(Q,Σ,δ, s,F) where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q×Σ−!Q is a transition function that accepts a state and a letter
and tells what state to go into. (This is a truncated version of a tran-
sition function that we saw in Diagram (??) of a deterministic Turing
machine. However, here, where there is no writing on tapes and the
direction is forced to always be right.)

• s ∈Q is the starting state.

• F ⊆Q is the set of accepting states.

^

While this definition is fine, one can soup-up the definition to get a seem-
ingly more powerful structure.

Definition 7.1.9. A nondeterminstic finite automaton with ε-moves is
a 5-tuple (Q,Σ,δ, s0,F) where everything is as in Definition 7.1.8 except
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• δ : Q× (Σ∪ε)−!P (Q) is a transition function that accepts a state and
a letter or an ε and tells what set of possible states to go into. (This is a
truncated version of a transition function that we saw in Diagram (??)
of a nondeterministic Turing machine. However, here, where there is
no writing on tapes and the direction is forced to always be right.)

^

Exercise 7.1.10. Show that every nondeterminstic finite automaton with ε-
moves has an equivalent nondeterminstic finite automaton and ε-moves with
a single accepting state.

Solution: Add one new state, i.e., Q′ =Q∪{t} and make an ε-move from each
of the states in F to t. This ensures that any time the machine is in some
accepting state, it is automatically in t. ■

Exercise 7.1.11. Show that every nondeterminstic finite automaton with
ε-moves as defined in Definition 7.1.9 is equivalent to an object of FinAutΣ
as defined in Definition 7.1.4.

Solution: The states Q are the objects of the finite graph. The δ describes the
arrows from state to state labeled by letters of the alphabet. s is the starting
state. The last Exercise shows that one needs a single accepting state. ■

The relationship between the category of deterministic finite automata
FinAutΣ and the category of nondeterministic finite automata with ε-moves
NFinAutΣ is worthy of thought. Every deterministic finite automaton is
a type of nondeterministic finite-automaton where there is exactly one state
that one can go to and there is no ε move. This means that there is an inclu-
sion functor Inc : FinAutΣ ,−!NFinAutΣ

On the other hand, for every nondeterministic finite automata with ε-
moves, there exists a deterministic finite automata that accepts the same
language. The idea behind this construction is that for a nondeterministic
finite automaton M we can construct deterministic finite automaton F(M)
that recognizes the same language as M. The set of states for F(M) will be
the powerset of the set of states of M. In other words, if Q is the set of states
of M, then P (Q) is the set of states of F(M). The transitions for F(M) are best
described with an example. If the transitions for M out of one state looks like
this:
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q7 q2 q3

q9 q5
a //aoo

a

!!

b

vv

b
hh

b
aa

b

==

q21

q35 q99

(7.10)

then the transactions for F(M) out of that same state looks like this

{q9, q21, q99} {q5} b //aoo {q35, q7, q2, q3}. (7.11)

This is a deterministic finite automaton that has the same information as the
original nondeterministic finite automata.

We have just essentially defined a functor F : NFinAutΣ−!FinAutΣ.
Inc and F are related as follows:

FinAutΣ

L '' ''

� � Inc // NFinAutΣ

L′wwww

F

vv

Regular.

(7.12)

The two triangles in the diagram commute and F ◦ Inc = Id but Inc ◦F need
not equal the identity.
Advanced Topic 7.1.12. Given a program, one can ask if it is the shortest
program that performs the task. It turns out that for a modern computer
(Turing machine) there is no way to determine if the given program is the
shortest program or not. In contrast, finite automata are simple enough ma-
chines that there is a procedure that can take a finite automaton and find a
finite automaton that accepts the same language but has the fewest states.
This minimal state finite automata is universal in the categorical sense. See
Section 3.4 of [10], Section 9.7 of [7], and Section 5.7 of [19]. ©
Research Project 7.1.13. A nice research project is to extend the categor-
ical definition of the category of finite automata given in Definition 7.1.4 to
formulate the notion of the category of pushdown automaton. This demands
that every edge of a graph no only get a letter to read but also a letter to
potentially push onto a stack. Another letter is needed to decide what to do
when one pops an element off a stack. While you are at it, you might as
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well extend this extension to formulate the notion of a pushdown automa-
ton with two stacks. It turns out that any pushdown automaton with two
stacks is equivalent to a Turing machine. See if you make an equivalence be-
tween the category of two-stacked pushdown automatas and the the category
Turing(1,1).

Another nice small project is to formulate the union, concatenation and
star operations as functors on the category of finite automata and as func-
tors of regular languages. Make sure the operations as functors agree with
the functor L from the category of finite automata to the category of regular
languages. This means that the following square should be commutative.

FinAutΣ×FinAutΣ
Operation //

L×L
��

FinAutΣ

L
��

Regular×Regular
Operation

// Regular.

(7.13)

♣

Further Reading

Chapters 1-4 of [22], Chapters 7-9 of [7], Chapters 5-16 of [19] and Chap-
ters 2-6 of [10]. Our categorical presentation of finite automata gained much
from Section 5.3 of [25]. There is an entire book about finite automata from
a categorical perspective that is interesting: [8].
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7.2 Cryptography

Few persons can be made to believe that it is not quite an easy thing to invent
a method of secret writing which shall baffle investigation. Yet it may be

roundly asserted that human ingenuity cannot concoct a cipher which
human ingenuity cannot resolve.

Edgar Allan Poe
“A Few Words on Secret Writing” in Graham’s Magazine (July 1841).

Traditionally cryptography is the science of communicating hidden mes-
sages in the presence of adversaries. Modern cryptography uses ideas from
complexity theory to make sure that any adversary that intercepts the secret
messages will have a hard time decoding the messages. That is, it will be
computationally inefficient for the adversaries to decode the messages.

Before we go further, we need to learn some of the nomenclature of cryp-
tography. We usually have “Alice” trying to communicate something to “Bob.”
Alice’s message starts in “plaintext” and she uses a “cipher” to encode the
plaintext into “ciphertext.” The ciphertext is sent to Bob who decodes it back
to plaintext. There is also an eavesdropper named “Eve” who can intercept
the ciphertext. In our use, the plaintext will be described by a sequence of
data types called SeqA and the ciphertext will be a sequence of types called
SeqB. Alice will use a computable function e : SeqA −! SeqB to encode
plaintext to ciphertext. Bob will use a computable function d : SeqB −!
SeqA to decode the ciphertext into plaintext. Eve will see the ciphertext and
try to find the correct decoder. Hopefully she will have a hard time doing this.

The power of category theory will be obvious here. We will describe a sim-
ple categorical structure and every major cryptographic protocol will be an in-
stance of this categorical structure. In order to do this we will need to define
Easy and Hard which will correspond to functions that are easy to compute
and hard to compute. Easy will be a subcategory of TotCompFunc which
contains all the identities of TotCompFunc and has morphisms that do
not demand much computational resources. In contrast, Hard will not be a
subcategory but a subset of morphisms in TotCompFunc that are not in
Easy.

We are being intentionally vague about the morphisms inEasy and Hard.
Here are some of the many possibilities.

• The obvious choice is to have Easy =DTIME(Pol y), that is all poly-
nomial time deterministic functions and let Hard be all functions that
use exponential amount of time or worse. The problem with this, is
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that a function that runs in n100 is polynomial but is not exactly easy
to compute.

• Easy can be any function under n5 and leave Hard as functions that
demand an exponential amount of time.

• Researchers are already talking about “post-quantum cryptography.”
This is where we assume that Eve has a large-scale quantum computer
and will use it on the ciphertext. In that case, Easy will be functions
that demand time in the low polynomials but Hard should be functions
that demand more resources than exponential time. Perhaps exponen-
tial space.

With Easy and Hard in hand, we make the following simple definition
as a nice steppingstone for our ultimate goal of a single structure which de-
scribes many cryptography protocols. The intuition is that there is an easy
encoding function that is hard to decode.

Definition 7.2.1. A one-way function is a morphism e : SeqA−! SeqB in
Easy such that any morphism d : SeqB−! SeqA in TotCompFunc with
the property d ◦ e = IdSeqA is in Hard. ^

Example 7.2.2. The simplest example of a one-way function is multipli-
cation. The computable function Mult : Nat × Nat −! Nat is defined as
Mult(m,n) = m · n if m and n are both primes (set the result to 0 if either
number is not a prime). This function is polynomial. In contrast, an inverse
of this function would have to factor the number. At this time, we can factor
an x with a search through many numbers less than

p
x to find a factor. This

can be an exponential function in terms of the size of x. ä
Example 7.2.3. Another example of a one-way function is modular exponen-
tiation. As we saw in Example ??, in contrast to real numbers where one
can easily invert the exponentiation function by taking the logarithm of the
number, for the discrete case, there is no known easy way of inverting the ex-
ponentiation function. The function f : Nat×Nat×Nat−!Nat×Nat×Nat
defined as

f (n,b, x)= (n,b,bxMod n) (7.14)

is polynomial in the size of the input. In contrast, given (n,b,bxMod n) one
has to search through many possible values to find x. This might be expo-
nentially time consuming and is called the Discrete logarithm problem.

ä
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While the definition of a one-way function is interesting and the two ex-
amples given are worthy of deeper thought, it is not very applicable. One of
the main tenets of cryptography is that the intended receiver of the secret
message should be able to easily decode the message. In other words, the
function d : SeqB −! SeqA should also be a morphism in Easy. It should
not be hard to decode, rather, it should be hard to find the right decoder. The
notion of a trapdoor function will be helpful. While it is hard to find the right
decoder, with the right key, it will be easy to find the right decoder. A trap-
door is a secret door in the floor that one can easily fall into, but is hard to get
back out. (Some of the literature gives the definition of a trapdoor function in
terms of the probability of finding the correct decoder. Our definition is based
on the complexity of finding the correct decoder.)

Definition 7.2.4. A cryptographic protocol that encodes data of type
SeqA into data of type SeqB consists of

(i) a set of “encoder” functions, Enc ⊆ HomEasy(SeqA,SeqB),

(ii) a set of “decoder” functions, Dec ⊆ HomEasy(SeqB,SeqA),

(iii) an “inverter” function INV : Enc −! Dec in Hard such that for all
e ∈ Enc there is a d = INV (e) that satisfies d ◦ e = IdSeqA,

(iv) a “key” function KEY : Enc−! Seq in Hard such that for all e ∈ Enc
there is a ke = KEY (e), and

(v) a “trapdoor” function TRP : Seq−!Dec in Easy satisfying

Seq
TRP

""
Enc INV

//

KEY
;;

Dec

(7.15)

i.e., for every e ∈ Enc there is a “key” ke ∈ Seq such that TRP(ke) =
INV (e).

^

First we will describe a few simple protocols to get our feet wet.

Example 7.2.5. Probably the simplest cryptographic protocol is the Caesar’s
cipher. This supposedly goes back to a method used by Julius Caesar to
communicate with his generals. He changed the plaintext by exchanging
every letter in the alphabet with another letter shifted over a fixed amount.
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If you shift the letters in the English alphabet 6 positions then it looks like
this:

A 7!G,B 7!H, . . . ,T 7! Z,U 7! A,V 7!B,W 7!C, X 7!D,Y 7!E, Z 7! F.
(7.16)

A secret message would then change from “ATTACK AT DAWN!” to “GZZGIQ
GZ JGCT!”

In terms of our definition, the Caesar cipher is a cryptographic protocol
from String to String. (i) There are 26 functions in Enc = { f1, f2, f3, . . . f26}.
Each one, simply shifts over the letters a fixed amount. (ii) Dec = Enc.
(iii) For each f ∈ Enc, there 26 possible values for INV ( f ). This is not
so bad in terms of modern computers. Even before computers came along,
the Caesar cipher was not a very effective cryptographic protocol. (iv) For
every map fx ∈ Enc, the key is the number x. (v) The trapdoor function
TRP : Nat −! StringString is defined as TRP(x) = f−xMod26. Its not hard
to see that TRP(x)◦ fx = Id. ä
Example 7.2.6. A slightly more complicated cipher is called a Substitution
cipher. Alice encodes her message to Bob by exchanging some letter for some
other letter. That is, there is some permutation of the letters. There are 26!
such permutations. (i) Enc will consist of 26! maps. Each permutation π

of the letters will determine a function fπ that changes a plaintext message
into a ciphertext message by swapping the letters. (ii) Dec = Enc. (iii) The-
oretically, for Eve to find the value of INV ( f ) she would have to go through
all possible decoding functions in Dec to recover the plaintext. (How would
she know when she has the right plaintext?) (iv) The key for fπ is π. (v)
The trapdoor function inputs the permutation used and outputs the inverse
permutation function, i.e., TRP(π)= fπ−1 .

Since 26! is an astoundingly large number, the function INV is in any-
one’s definition of Hard and this protocol seems secure. However, it is not!
This code can easily be broken by statistical analysis. Every language has
certain statistical facts that make this protocol breakable. For example, in
English text, the letters “e,” “t,” and “a” are the most popular letters. In
contrast, the letters “j,” “q,” and “z” are the least popular letters. Every “q”
is followed by “u.” Many words start with “th,” etc. In order to break the
code, perform a statistical analysis on the ciphertext and make some edu-
cated guesses as to what letters are substituted. Eve has it pretty easy. ä
Example 7.2.7. A one-time pad cipher uses a random text to form the
ciphertext. The name comes from the fact that the random text can only be
used once. If it is used more than once, the cipher might be broken. For



7.2. CRYPTOGRAPHY 21

our purposes, this cipher encodes Bool∗ to Bool∗. The random text is also a
string of Bool and must be at least the same size as the text. Alice and Bob
must agree on the one-time pad beforehand. Given a plaintext, the cipher
does an exclusive or (XOR) on every bit of the plaintext with the one-time
pad to get the ciphertext as follows.

0 1 1 1 0 1 0 plaintext

⊕ 1 1 0 1 0 0 1 one-time-pad

1 0 1 0 0 1 1 ciphertext

To decode, Bob simply has to do the same operation to the ciphertext. To
see this, think of p as a bit of plaintext, t as a bit of the one-time pad and c
as a bit of the ciphertext. Using this, we can describe the cipher as p⊕ t = c.
To decode, XOR with the one-time pad to get c⊕ t = p⊕ t⊕ t = p⊕0 = p. The
reason why it is called a one-time pad is because if you use the same one-time
pad for both p and p′ then you will get p⊕ t = c and p′⊕ t = c′. Eve can then
take c and c′ and XOR them to get c⊕ c′ = p⊕ t⊗ p′⊕ t = p⊕ p′⊕ t⊕ t = p⊕ p′.
From here, it is not hard to extract p and p′.

Let us describe this protocol using our categorical structure. (i) For a
plaintext message of size n, there will be 2n one-time-pads and hence Enc
has 2n encoders. (ii) Once again, Dec = Enc. (iii) Given the ciphertext, only
a brute-force search through all one-time-pads will give you the inverse func-
tion. Since there are 2n such one-time pads, this is exponentially hard. (iv)
The key is the one time pad. (v) The trapdoor function takes the one-time pad
P and outputs the function that uses that pad, i.e., TRP(P)= fP .

The one-time pad is essentially secure unless Alice uses it twice. The
problem is that there needs to be a lot of shared one-time pads. This is not
always easy. This brings us to our next idea. ä

So far, all the examples that we have seen are called private key pro-
tocols or symmetric key cryptography. This means that the key used to
decode is essentially the same as the code used to encode. The keys shared
by Alice and Bob are symmetric and must be kept private. This brings to
light many other issues in cryptography. There is “key generation” (how are
all these keys randomly created,) “key establishment” (how are the keys dis-
tributed or agreed on,) and “key management” (how are the keys stored and
kept secret.) Also, notice that if Bob wants to communicate with Ann, An-
gelina, and Aishwarya, he has to have shared keys with each of them. Con-
fusing the keys could get embarrassing.
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Cryptography went through a major revolution at the end of the 1970s
with the advent of public key protocols and asymmetric key cryptog-
raphy. This is where Bob publicly announces a public key for anyone to
communicate with him. The decoding key will be different (or asymmetric)
from the encoding key. Much internet communication is performed with these
ideas.

The paradigm example of public key protocols is RSA.

Example 7.2.8. The RSA protocol was invented by Ron Rivest, Adi Shamir,
and Leonard Adleman, in 1978 (but there is an interesting prehistory that is
worthy of looking into.)

Before anyone can communicate with Bob, he must perform the following
preliminary tasks.

(I) Randomly choose two large prime numbers p and q.

(II) Multiply these number to get n = p · q.

(III) Determine how many numbers less than n are relatively prime to n.
(That is, the number of elements less than n that do not have any non-
trivial common factor with n, i.e., determine the number of x < n such
that GCD(n, x) = 1.) The function this describes is called the Euler’s
totient function and is denoted φ(n). Since p and q are both prime
we have φ(p)= p−1, φ(q)= q−1 and φ(n)=φ(p · q)= (p−1)(q−1).

(IV) Randomly choose a number e < n that is a relatively prime to φ(n).

(V) Calculate d such that

e ·d ≡ 1 Mod φ(n) or in other words e ·d = 1+kφ(n) for some k.

All five of these steps can be done with ease in polynomial time. Bob makes
(e,n) to be the public key and he keeps (d,n) as his private key.

We need to consider functions of the form fg,x which are defined as
fg,x(m) = mg Mod x. This operation is called modular exponentiation.
There are nice computational tricks to perform these operations in polyno-
mial time or less.

Let us formally go through the RSA cryptographic protocol that encodes
Nat into Nat.

(i) Since Bob told us how anyone can communicate with him, we can set
Enc = { fe,n} to be the singleton set.
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(ii) In contrast, there are many possibilities for decoders. Basically the
decoder can use any exponent less n that could factor φ(n)

Dec = { fx,n : x < n}. (7.17)

(iii) One possible way of finding the right INV ( fe,n) is to factor n into p and
q. With p and q it is easy to determine φ(n) and then d. However to
determine these factors is exponentially hard in the size of n.

(iv) KEY ( fe,n)= d.

(v) Bob can easily decode the ciphertext by using the trapdoor function
TRP(d)= fd,n.

Why does RSA work? Let us say that Alice wants to communicate the number
m to Bob. Alice uses the public key to get

fe,n(m)= me Mod n = c. (7.18)

She then sends c to Bob. He uses fd,n on c to get

fd,n(c)≡ cd Mod n ≡ (me Mod n)d Mod n ≡ (me)d Mod n ≡ mc·d Mod n.
(7.19)

By Equation ((V)), this is equal to

m1+kφ(n) Mod n ≡ m×mkφ(n) Mod n ≡ m× (mφ(n))k Mod n. (7.20)

Euler’s theorem in number theory says

mφ(n) Mod n ≡ 1 Mod n (7.21)

which means
m× (mφ(n))k Mod n ≡ m×1 Mod n = m (7.22)

thus showing that the decryption function works.
It is worth noting that if Eve can factor n = pq then she would be able

to find d and decipher any message. While there are no known deterministic
polynomial time algorithm to factor numbers, there is a polynomial algorithm
[20] on a quantum computer that can factor numbers. As scientists get bet-
ter and better at making large-scale quantum computers, the usefulness of
RSA is less assured. See [30] for an easy introduction to Shor’s algorithm for
factoring and for quantum computing in general. ä
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Example 7.2.9. Before we move on to some more protocols, let us take a
small interlude and explore another feature of public key cryptography. Let’s
say that Bob wants to send a message and he wants to make sure that Al-
ice knows the message comes from him and no one else. We assume that
INV (e) = d not only satisfies d ◦ e = Id but also e ◦ d = Id. Bob can send
a digital signature by sending his message m along with d(m). Alice will
then take d(m) (which she will not be able to understand) and apply e to it.
If e(d(m)) = m then she knows that this message could have only come from
Bob. No one else would have the private key d. ä
Example 7.2.10. As we saw, one of the hard parts of cryptography is making
sure that Alice and Bob have matching keys. The Diffie-Hellman key ex-
change protocol accomplishes this in a clever way. Rather than using the
hardness of factoring, this protocol uses the hardness of discrete logarithms
which we met in Examples ?? and 7.2.3. The protocol is a five-step process.

(I) Alice and Bob publicly agree on a large prime number p and an integer
α ∈ {2,3, . . . , p−2}. (They can do this in public because Eve will not gain
by knowing this information.)

(II) Alice randomly chooses a private a ∈ {2,3, . . . , p − 2}, calculates A =
αa Mod p and sends A to Bob. (Eve will not be able to easily compute
a.)

(III) Bob randomly chooses a private b ∈ {2,3, . . . , p − 2}, calculates B =
αb Mod p and sends B to Alice. (Eve will not be able to easily com-
pute b.)

(IV) Alice raises B to her secret a number to get Ba Mod p ≡ (αb)a Mod p.

(V) Bob raises A to his secret b number to get Ab Mod p ≡ (αa)b Mod p.

Since (αa)b Mod p ≡ (αb)a Mod p, Alice and Bob now share a secret number.
Neither Bob nor anyone else knows Alice’s a. Neither Alice nor anyone else
knows Bob’s b. This all comes from the fact that modular exponentiation is
in Easy while discrete logarithm is in Hard. ä
Example 7.2.11. The El-gamal encryption protocol uses the Diffie-
Hellman key exchange protocol to communicate. Imagine Alice wants to send
the number m to Bob. They simply exchange a secret key as in the previous
example. Once this is done, the protocol continues as follows:

(VI) Alice multiplies her secret number by m. That is she calculates ((αa)b) ·
m Mod p and sends it to Bob.
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(VII) Bob calculates the inverse of his (their) number ((αa)b)−1 Mod p.

(VIII) Bob deciphers Alice’s message by multiplying the inverse with what he
receives from Alice.

((αa)b)−1((αa)b) ·m Mod p ≡ 1 ·m Mod p = m Mod p. (7.23)

ä
Example 7.2.12. Let us simply mention that there are public key cryptogra-
phy protocols Elliptic curve encryption protocols (ECC) that are based
on a shared mathematical structures called “elliptic curves.” There is an ECC
Diffie-Helman protocol, an ECC El-Gamal protocol, etc. Although these sys-
tems are more mathematically sophisticated, they have many good features.

ä
Before we close our discussion of cryptography we should note that there

seems to be a close relationship between cryptography and categorical coher-
ence theory. Remember that coherence theory is a type of higher-dimensional
algebra that discusses the implications of higher-order axioms. The classi-
cal example of coherence theory is Saunders Mac Lane’s monoidal categories
(see Section VII.2 of [15]). There is a discussion of different operations one
can use to reassociate ((AB)C)D to A(B(CD)). Coherence theory gives con-
ditions that tell when different operations turn out to be the same. We have
a similar situation in cryptography. Alice and Bob are performing different
operations on data and the protocols tell us what operations to perform so
that the messages will be successfully communicated and decrypted.

• In RSA, the central idea is that (me)d ≡ m(e·d) Mod n or in terms of
commuting diagrams

Nat×Nat×Nat
(–)(–)×id //

id×·
��

Nat×Nat

(–)(–)

��
Nat×Nat

(–)(–)
// Nat.

(7.24)

.

• In Diffie-Hellman, the central idea is (αa)b ≡ (αb)a Mod p or in terms
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of commuting diagrams

Nat×Nat×Nat
(–)(–)×id //

id×tw
��

Nat×Nat

(–)(–)

��
Nat×Nat×Nat

(–)(–)×id
// Nat×Nat

(–)(–)
// Nat.

(7.25)
.

• In El-gamal, the central idea is ((αa)b)−1((αb)a)·m ≡ m Mod p. One can
make a similar coherence diagram corresponding to this equation.

• There are similar axioms in the elliptic curves protocol.

There is work to be done in this direction.

Research Project 7.2.13. A nice research project would be to look at some
of the new post-quantum cryptography protocols. See if they can be put into
our categorical formulation of a cryptographical protocol.

One should also show why post-quantum cryptography will be important
when quantum computers come into existence. Formulate the notion of a
quantum Turing machine (see, e.g., Chapter 8 of [30]) and the symmetric
monoidal bicategory QTotTuring of all quantum Turing machines. There
will be a functorQTotTuring−!TotCompFunc that takes every quan-
tum Turing machine to the function it calculates. Go on to formulate a subcat-
egory of TotCompFunc consisting of quantum easy functions and a subset
of quantum hard functions. Show that the classical crptographic protocols
will collapse with the existence of a quantum computer but that the post-
quantum protocols will be successful. ♣

Further Reading

The book [17] is an easy introduction to the main ideas of cryptography.
Cryptography has a wonderfully long history that is worthy of study. One can
learn much from the authoritative [11] and the delightful [21]. Cryptography
is discussed in terms of complexity theory in Section 31.7 of [6], Section 10.6
of [22], Chapter 12 of [18], and Chapter 9 of [1].

Peter Hines has been doing some very intriguing work on the relationship
between coherence theory and cryptography [9].
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7.3 Kolmogorov Complexity Theory

Language can only deal meaningfully with a special, restricted segment of
reality. The rest, and it is presumably the much larger part, is silence.

George Steiner
Page 21 of [24]

Kolmogorov complexity theory (sometimes also called algorithmic
information theory) is about measuring the how much information a string
has. We say the Kolmogorov complexity of string w is the size of the smallest
Turing machine that can produce w. The idea is that if the string is a simple
string then a small Turing machine can produce the string. In contrast, if
the string is more complicated and has more information, then the Turing
machine needs to be more complicated. What if the string is so complicated,
that there are no small Turing machines that can produce it?

First some motivating examples. Consider the following three strings:

1. 00000000000000000000000000000000000000000000000

2. 11011101111101111111011111111111011111111111110

3. 01010010110110101011011101111001100000111111010

All three are words in {0,1}, and are of length 45. It should be noted
that if you flipped a coin 45 times the chances of observing any of these three
sequences are equal. That is, the chances for each of the strings occurring is

1
245 . This demonstrates a fault of classical probability theory in measuring
how much information a string has. Whereas you would not be shocked to see
a sequence of coin flips produce a string like 3, the other two strings would
be surprising.

Rather than looking at the probability of producing such a string, a better
way of measuring the informational content is to look at the shortest pro-
grams that we can find to describe these strings:

1. Print 45 0’s.

2. Print the first 6 primes.

3. Print ‘01010010110110101011011101111001100000111111010’.

The shorter the program, the less real information in the string. Such a
string is “compressible” because rather then writing the whole string, you can
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compress it and just write the program. In contrast, if only a long program
can describe the string, then the string has more content.

What about the third string. There might be a shorter program that pro-
duces the third string, but I do not know of any. There could be some pattern
in the string that I cannot see. We will see in Theorem 7.3.4, that there is no
way to compute the size of the shortest program and so there is no way to tell
if there is a shorter program.

If the only way to have a computer print a string is to literally have the
string in the program then the string is “incompressible.” An incompressible
string is also called “random” because it has no patterns that we can use to
print it out.

We note in passing that Kolmogorov complexity theory is not the only way
to measure strings. There is complexity theory (how many steps does it take
for the Turing machine to print the string), logical depth [2], sophistication
[13], and others.

In order to formally describe Kolmogorov complexity we only need one
part of one category from The Big Picture. We consider

TotTuring(1,1)= HomTotTuring(1,1). (7.26)

This is the set of all Turing machines that accept one string and return one
string. There is a size functor Sz : TotTuring(1,1)−!N where N is the
total order category of natural numbers. This functor assigns to every total
Turing machine the number of rules in the Turing machine.

Definition 7.3.1. Let x and y be strings. Then we define the relative Kol-
mogorov complexity to be the size of the smallest Turing machine that
accepts input y, and outputs x. In symbols, K : String × String −! Nat
defined as

K(x|y)= min
T∈TotTuring(1,1)

T(y)=x

Sz(T) (7.27)

If y is the empty string ε, then K(x)= K(x|ε) is the Kolmogorov complexity
of x. This is the size of the smallest Turing machine that starts with an empty
tape and outputs x. ^

Technical Point 7.3.2. For those who know and love the language of Kan
extension, the Kolmogorov complexity of a string can be given as a right Kan
extension. Consider the functor

Out : TotTuring(1,1)−! String (7.28)
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that produces the output of a Turing machine when the empty string is given,
i.e., Out(T)= T(ε). Then the right Kan extension

String K // d(N )

TotTuring(1,1)
Out

hh

Sz

77 (7.29)

gives the Kolmogorov complexity functor. ♥
As we saw with the third string in our examples, we can always simply

print out any string. In terms of Turing machines this means that there is a
set of rules that can be combined with a string such that the Turing machine
will start with an empty input tape and then print out the string. There will
be one rule per character in the string. Let c be the size of the set of rules
that work with any string. In terms of the third example above c is the size
of Print ‘ ’.We have just proven the following theorem.

Theorem 7.3.3. There exists a constant c such that for all strings x we have
K(x)≤ |x|+ c. F

If K(x)< |x| then x is compressible, otherwise x is incompressible and
random. The use of the word random is counterintuitive. We usually thing
of random as without any rules. Here we are saying that it needs so many
rules that it can only be described by writing it out, i.e., random.

We end this short tour of Kolmogorov complexity theory with the main
theorem about K . One might believe that K can be computed and we can find
the exact amount of minimal structure each string contains. Wrong.

Theorem 7.3.4. K : String−!Nat is not in TotCompFunc, i.e., it is not
a total computable function. F

Proof. The proof is a proof by contradiction. Assume (wrongly) that K is a
computable function. We will use this function to show a contradiction. If
K is computable, then we can use K to compute the computable function
K ′ : Nat−! String which is defined as follows:

1. Accept an integer n as input.

2. Go through every string s ∈Σ∗ in lexicographical order

a Calculate K(s).

b If K(s)≤ n, continue.

c If K(s)> n, output s and stop.
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For any n this program will output a string with a larger Kolmogorov com-
plexity than n. This program has a size, say c. If we “hard-wire” a number
n into the program, this would demand logn bits and the entire program
will be of size logn+ c. Hard-wiring means making a computable function
K ′′ : ∗ −! Nat −! String where ∗ −! Nat picks out n. K ′′ will output a
string that demands more complexity than n. Since we can find an n such
that n > logn+ c, K ′′ will produce a string that has higher Kolmogorov com-
plexity then the size of the Turing machine that produced it. This is a con-
tradiction. Our assumption that K is computable is false. �

This deep theorem means we can never determine if there is more struc-
ture than what we see.
Advanced Topic 7.3.5. In 1975 Gregory J. Chaitin introduced [5] a number
whose digits are not compressiable. The number which he called Ω is the
probability that a random Turing machine will halt. If you look at descrip-
tions of Turing machines and for every Turing machine T, you write |T| as
the size of the description, then Ω can be written as

Ω= ∑
T halts

2−|T| (7.30)

In a sense, Ω has the unsolvablility of the Halting problem built into it. The
number is uncomputable by any Turing machine and is transcendental (that
means it is like π and e and cannot be described by algebraic means.) The
Ω depends on how the Turing machines are described. Robert Solovay [23]
formulated a way of describing Turing machines such that it is impossible to
even determine one bit of Ω. See Section 7.1 of [4] and Section 3.6.2 of [14].

©
Research Project 7.3.6. We used Kolmogorov complexity theory to define
randomness. There are, however, other ways to describe randomness in terms
of computability. Two of the other ways are Martin-Löf ’s randomness and
randomness by constructive martingales. It is a fact that Kolmogorov ran-
domness is equivalent to these other two methods. A nice research project
would be to understand these ways of defining randomness. These other
methods should also be described using the category of computable functions.
It would be nice to then show that categorically these three methods define
the same subset of the real numbers. There are still other, more powerful,
ways to define randomness. Try to formulate them in terms of our categories
of computable functions.

Another interesting project would be to describe other measures of string
complexity like logical depth [2] and sophistication [13] . We described Kol-
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mogorov complexity in a categorical way, it would be nice to see these other
done in a categorical way. ♣

Further Reading

The main textbook in this field is [14]. Christian S. Calude’s book [4] is
wonderful. There is also a short, beautiful introduction to the whole field in
Section 6.4 of [22]. One of the founders of this field is Gregory J. Chaitin. All
of his books and papers are interesting and worth studying.

There is yet another connection between category theory and Kolmogorov
complexity theory. In my [27] I extend the notion of Kolmogorv complexity
from measuring strings to measuring categorical structures.
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7.4 Algorithms

Of course if I am pinned down and asked to explain more precisely what I
mean by these remarks, I am forced to admit that I don’t know any way to

define any particular algorithm except in a programming language.
Donald Knuth [12]

We close this text with a short discussion of the definition of “algorithm.” No-
tice that this word has not been stressed so far. While we freely used the
words “function,” “program,” “Turing machine,” we avoided the word “algo-
rithm.” This is because the formal definition of the word is not simple to
describe.

There are those who say that an algorithm is exactly the same thing as a
program. In fact, on page 5 of the authoritative [6], an algorithm is informally
defined as “any well-defined computational procedure that takes some value,
or set of values, as input and produces some value, or set of values, as output.”
We are left with asking what is a “procedure?” Furthermore, this informal
definition seems like it is defining a program not an algorithm.

The problem with equating algorithms with programs is that the word
“algorithm” is not used this way colloquially. If there are two programs that
are very similar and only have minor differences, we usually do not consider
them different algorithms. We say that the algorithm is the same but the
programs are different. Here are some examples of two programs that are
different but we would still consider to be the same algorithm:

• One program uses variable name x for a certain value, while the other
program uses variable name y for the same value.

• One program performs a process n times in a loop, while another pro-
gram performs the process n−1 times in a loop and then does the pro-
cess one more time outside of the loop.

• One program performs two unrelated processes (they do not effect each
other) in one order, while a second program performs the unrelated
processes in the reverse order.

• One program performs two unrelated processes in one loop, while a
second program performs each of the two unrelated processes in their
own separate loop.

This list can easily be extended.
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Let us make the case in another way. A teacher describes a certain al-
gorithm to her computer class. She tells her thirty students to go home and
implement the algorithm. Assuming that they are all bright and that there is
no cheating, thirty different programs will be handed in the next class. Each
program is an implementation of the algorithm. While there are differences
among the programs, they are all “essentially the same.” All the programs
definitely implement the same function. This is the way that the word “algo-
rithm” is used.

With this is mind, we make the following definition.

Definition 7.4.1. Take the set of all programs. We describe an equivalence
relation on this set where two programs are equivalent if they are “essentially
the same.” An algorithm is an equivalence class of programs under this re-
lation. Note that all the programs in the same equivalence class perform the
same computable function. However there can be two different equivalence
classes that also perform the same function. ^

Figure 7.1 makes this all clear. There are three levels. The top level is the
collection of all programs. The bottom level is the collection of all computable
functions. And in-between them is the collection of algorithms. Consider
programs mergsorta and mergesortb. The first program is an implementa-
tion of mergesort programed by Alice, while the second program is written by
Bob. They are both implementations of the algorithm mergesort found in the
middle level. There are also programs quicksortx and quicksorty that are
different implementations of the algorithm quicksort. Both the algorithms
mergesort and quicksort perform the same computable function sort. The
big circle above the cone represented by sort contains all the programs that
implement the sort function. Above the computable function f ind max there
are all the programs that take a list and find the maximum element. Some
of those programs are essentially the same and are implementations of the
binarysearch algorithm while others implement the brute search algo-
rithm.

Whenever we have equivalence classes, we have projection functors. (We
can also discuss quotient categories). In terms of categories, this idea de-
scribes two full (symmetric monoidal) functors of (symmetric monoidal) cate-
gories.

Program // // Algorithm // // CompFunc

All the categories and bicategories have sequences of types as objects. Program
can be Turing, RegMach, and Circ or any other syntactical way of de-
scribing computation. The left functor takes every program to the algorithm



34CHAPTER 7. OTHER FIELDS OF THEORETICAL COMPUTER SCIENCE

Figure 7.1: The Definition of an Algorithm

it implements. This functor is the identity on objects and full on morphisms.
The right functor takes every algorithm to the computable function that it
describes. It too is the identity on objects and full on morphisms.

The top level — programs — is the domain of programmers. The bottom
level — computable functions — is really what mathematicians study. And
the middle level is the core of computer science. The bicategories Program
(e.g., Turing, RegMach and Circ, etc.) are syntactical in the sense that
they are an exact description of a computational process. In contrast,CompFunc
is semantic. The functions are the meaning of the programs. Algorithms are
somewhat in-between syntax and semantics. They are “the ideas” of descrip-
tions of functions.

Defining an object as an equivalence class of more concrete objects is
not unusual. (i) Some philosophers follow Gottlob Frege in defining natu-
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ral numbers as equivalence classes of finite sets that are bijective to each
other. In detail, take the set of finite sets and put an equivalence relation:
two sets are deemed equivalent if there exists a bijection between them. Ev-
ery equivalence class corresponds to a natural number. (As category theo-
rists, we say that the collection of natural numbers is the skeletal category
of finite sets.) The number 3 is “implemented” by all the sets with three el-
ements. (ii) Mathematicians describe a rational number as an equivalence
class of pairs of integers. In detail, the pair (x, y) is equivalent to (x′, y′) if and
only if xy′ = yx′. The fraction 1

3 is “implemented” by the pairs (1,3), (10,30),
(−30,−90), (534,1602), etc. (iii) Physicists do not study physical phenomena.
Rather, they study collections of phenomena. That is, they look at all phe-
nomena and declare two phenomena to be equivalent if there is some type of
symmetry between them. Two experiments that occur in different places, or
are oriented differently, or occur at different times are considered the same
if their outcome is the same. Laws of nature describe collections of physical
phenomena, not individual phenomena. See [28] for more about this and the
relationship between collections of phenomena and mathematics.

One can use these equivalence relations to discuss some very interesting
category theory. There is something subjective about the question of when
two programs are considered “essentially the same.” Each possible answer
will give us a different category of algorithms. (See [29] for more about this.)
As we have said before, the set of programs does not form a category but a
bicategory with extra structure. However, when we look at certain types of
equivalence classes of programs we get certain categories with extra struc-
ture. The equivalence relations will determine which types of structure we
will get. In a sense, the way we decide if two programs are “essentially the
same” will correspond to coherence conditions. Going from programs to al-
gorithms is a type of strictification. When we go further to genuine mathe-
matical functions we are further strictifying and the coherence conditions are
stronger. All this is done formally in [26, 29].

Research Project 7.4.2. It would be interesting if the functors from pro-
grams to algorithms and algorithms to functions had inverses or adjuncts. I
seriously doubt that such things exist for all programs of the same power as
Turing machines. (How would one even describe a function to make a functor
from functions to algorithms? How would one even describe a an algorithm
to make a functor from algorithms to programs. Also, if such functors existed
there would be a program with universal properties for every function. This
does not seem correct.)

However, one might lower their expectations and find some gems. For
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the syntax level, rather then looking at full fledged Turing machines, look at
finite automata. In that case, the semantic level will be regular languages.
On the algorithms level, there will be regular expressions or Kleene algebras.
In terms of funtors, there is a way of going from finite automaton to regular
expression and vice versa. The Myhill–Nerode theorem can be used as a
way of going from a regular language to a finite automaton. Advanced Topic
7.1.12 alludes to the universal properties of these functors. (See any formal
language theory textbook for these topics.) ♣

Further Reading

The idea of defining an algorithm as an equivalence class of programs
comes from my paper [26]. There is a followup to the paper which deals with
many different equivalence classes [29]. The first paper was criticized by
Andreas Blass, Nachum Dershowitz, and Yuri Gurevich in [3]. My definition
of an algorithm is used in the second edition of Manin’s logic book [16], and
by several others since.
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