Towards a Definition of an Algorithm

Noson S. Yanofsky
December 23, 2005

Abstract

We define an algorithm to be the set of programs that implement or
express that algorithm. The set of all programs is partitioned into equiv-
alence classes. Two programs are equivalent if they are “essentially” the
same program. The set of all equivalence classes is the category of all
algorithms. In order to explore these ideas, the set of primitive recur-
sive functions is considered. Each primitive recursive function can be
described by many labeled binary trees that show how the function is
built up. Each tree is like a program that shows how to compute a func-
tion. We give relations that say when two such trees are “essentially”
the same. An equivalence class of such trees will be called an algorithm.
Universal properties of the category of all algorithms are given.

1 Introduction

In their excellent text Introduction to Algorithms, Second Edition [5], Corman,
Leiserson, Rivest, and Stein begin Section 1.1 with a definition of an algorithm:

Informally, an algorithm is any well-defined computational proce-
dure that takes some value, or set of values, as input and produces
some value, or set of values, as output.

Three questions spring forward:

1. “Informally”? Can such a comprehensive and highly technical book of
1180 pages not have a “formal” definition of an algorithm?

2. What is meant by “well-defined?”

3. The term “procedure” is as vague as the term “algorithm.” What is a
“procedure?”

Knuth [7, 8] has been a little more precise in specifying the requirements de-
manded for an algorithm. But he writes “Of course if I am pinned down and
asked to explain more precisely what I mean by these remarks, I am forced to
admit that I don’t know any way to define any particular algorithm except in a
programming language.” ([8], page 1.)

2 Noson S. Yanofsky

Although algorithms are hard to define, they are nevertheless real mathemat-
ical objects. We name and talk about algorithms with phrases like “Mergesort
runs in n 1g n time”. We quantify over all algorithms, e.g., “There does not exist
an algorithm to solve the halting problem.” They are as “real” as the number
e or the set Z. See [6] for an excellent philosophical overview of the subject.

Many researchers have given definitions over the years. Refer to [3] for a
historical survey of some of these definitions. One must also read the important
work of Yiannis Moschovakis, e.g., [10]. Many of the given definitions are of
the form “An algorithm is a program in this language/system/machine.” This
does not really conform to the current meaning of the word “algorithm.” This
is more in tune with the modern usage of the word “program.” They all have
a feel of being a specific implementation of an algorithm on a specific system.
We would like to propose another definition.

We shall define an algorithm analogously to the way that Gottlob Frege
defined a natural number. Basically Frege says that that the number 42 is the
equivalence class of all sets of size 42. He looks at the set of all finite sets and
makes an equivalence relation. Two finite sets are equivalent if there is a one-
to-one onto function from one set to the other. The set of all equivalence classes
under this equivalence relation forms the set of natural numbers. For us, an
algorithm is an equivalence class of programs. Two programs are part of the
same equivalence class if they are “essentially” the same. Each program is an
expression (or an implementation) of the algorithm, just as every set of size 42
is an expression of the number 42.

For us, an algorithm is the sum total of all the programs that express it. In
other words, we look at all computer programs and partition them into different
subsets. Two programs in the same subset will be two implementations of the
same algorithm. These two programs are “essentially” the same.

What does it mean for two programs to be “essentially” the same? Some
examples are in order:

e One program might do Process; first and then do an unrelated Processs
after. The other program will do the two unrelated processes in the op-
posite order.

e One program might do a certain process in a loop n times and the other
program will unwind the loop and do it n — 1 times and then do the the
process again outside the loop.

e One program might do two unrelated processes in one loop, and the other
program might do each of these two processes in its own loops.

In all these examples, the two programs are definitely performing the same
function, and everyone would agree that both programs are implementations of
the same algorithm. We are taking that subset of programs to be the definition
of an algorithm.

Many relations that say when two programs are “essentially” the same will be
given. However, it is doubtful that we are complete. Hence the word “Towards”

Towards a Definition of an Algorithm 3

in the title. Whether or not two programs are essentially the same, or whether
or not a program is an implementation of a particular algorithm is really a
subjective decision. We give relations that most people can agree on that these
two programs are “essentially” the same, but we are well aware of the fact that
others can come along and give more relations.

We consider the set of all programs which we might call Programs. An
equivalence relation =~ of “essentially the sameness” is then defined on this set.
The set of equivalence classes Programs/ = shall then be called Algorithms.
There is a nice onto function from ¢ : Programs — Algorithms, that takes
every program P to the equivalence class ¢(P) = [P]. One might think of any
function ¢ : Algorithms — Programs such that ¢ oy = IdAlgorithms as
an “implementer.” 1 takes an algorithm to an implementation of that algorithm.

To continue with this line of reasoning, there are many different algorithms
that perform the same function. For example, Kruskal’s algorithm and Prim’s
algorithm are two different ways of finding a minimum spanning tree of a
weighted graph. Quicksort and Mergesort are two different algorithms to sort
a list. There exists an equivalence relation on the set of all algorithms. Two
algorithms are equivalent ~’ if they perform the same function. We obtain
Algorithms/ ~’ which we might call Comp. Functions or computable func-
tions. It is an undecidable problem to determine when two programs perform
the same computable function. Hence we might not be able to give the relation
~' nevertheless it exists. Again there is an onto function ¢’ : Algorithms —
Comp. Functions.

We summarize our intentions with the following picture.

Programing Programs
Computer Science Algorithms = Programs/~
Mathematics Comp. Functions = Algorithms /~/

Programs are what programers, or “software engineers” deal with. Algorithms
are the domain of computer scientists. Abstract functions are of interest to pure
mathematicians.

We are not trying to make any ontological statement about the existence of
algorithms. We are merely giving a mathematical way of describing how one
might think of an algorithm. Human beings dealt with rational numbers for
millennia before mathematicians decided that rational numbers are equivalence

4 Noson S. Yanofsky

classes of pairs of integers:
Q = {(mn)€ZxZn#0}/ =~

where
(m,n) ~ (m/,n') iff mn' =nm’.

Similarly, one can think of the existence of algorithms in any way that one
chooses. We are simply offering a mathematical way of presenting them.

There is a fascinating analogy between thinking of a rational number as an
equivalence class of pairs of integers and our definition of an algorithm as an
equivalence class of programs. Just as a rational number can only be expressed
by an element of the equivalence class, so too, an algorithm can only be expressed
by presenting an element of the equivalence class. When we write an algorithm,
we are really writing a program. Pseudo-code is used to allow for ambiguities
and not show any preference for a language. But it is, nevertheless, a program.

Another applicable analogy is that just as a rational number by itself has
no structure; it is simply an equivalence class of pairs of integers. So too, an
algorithm has no structure. In contrast, the set of rational numbers has much
structure. So too, the set (category) of algorithms has much structure. Q is the
smallest field that contains the natural numbers. We shall see in Section 4 that
the category of algorithms is the initial free category with a strict product that
is closed under recursion (i.e., has a natural number object).

When a human being talks about a rational number, he prefers to use the
pair (3,5) = % as opposed to the equivalent pair (6,10), or the equivalent
(3000,5000). One might say that the rational number (3,5) is a “canonical
representation” of the equivalence class to which it belongs. It would be nice if
there was a “canonical representation” of an algorithm. We speculate further
on this ideas in the last section of this paper.

The question arises as to which programming language should we use?
Rather than choosing one programming language to the exclusion of others,
we shall look at the language of primitive recursive functions. We choose this
language because of its beauty, its simplicity of presentation, and the fact that
most readers are familiar with this language. A primitive recursive function
can be described in many different ways. A description of a primitive recursive
function is basically the same thing as a program in that it tells how to calculate
a function. There is a basic correlation between programming concepts and the
operations in generating descriptions of primitive recursive functions. Recursion
is like a loop, and composition is just doing one process after another. We are
well aware that we are limiting ourselves because the set of primitive recursive
functions is a proper subset of the set of all computable functions. By limiting
ourselves, we are going to get a proper subset of all algorithms. Even though we
are, for the present time, restricting ourselves, we feel that the results we will
get by just looking at primitive recursive functions are worthy of presenting.

Section 2 will review the basics of primitive recursive functions and show
how they may be described by special labeled binary trees. Section 3 will
then give many of the relations that tell when two descriptions of a primitive

Towards a Definition of an Algorithm 5

recursive algorithm are “essentially” the same. Section 4 will discuss the set of
all algorithms. We shall give a universal categorical description of the category
of algorithms. This is the only Section that uses category theory in a non-trivial
way. Section 5 will discuss complexity results and show how complexity theory
fits into our framework. We conclude this paper with a list of possible ways this
work can progress.

Acknowledgement. Alex Heller, Florian Lengyel, and Dustin Mulcahey were
forced to listen to me working through this material. I am endebted to them for
being total gentlemen while suffering in silence. I am grateful to Rohit Parikh,
Karen Kletter, Walter Dean, and the entire Graduate Center Logic and Games
Seminar gang for listening to and commenting on this material. Shira Abraham,
Eva Cogan, Joel Kammet, and Matthew K. Meyer read through many versions
of this paper and commented on it. This paper would have been, no doubt,
much better had I listened to all their advice. This work was inspired by a talk
that Yuri Gurevich gave on his definition of an algorithm.

2 Descriptions of Primitive Recursive Functions

Rather than talking of computer programs, per say, we shall talk of descriptions
of primitive recursive functions. For every primitive recursive function, there
are many different methods of “building-up”, or constructing the function from
the basic functions. Each method is similar to a program.

We remind the reader that primitive recursive functions N* — N are “basic
functions”:

e null function n : N — N where n(z) =0
e successor function s : N — N where s(z) =z +1

e for each k € N and for each i < k, a projection function 7% : N¥ — N
where wf(:rl,xg, CTg) =T

and functions constructed from basic functions through a finite number of com-
positions and recursions.

We shall extend this definition in two non-essential ways. An n—tuple of
primitive recursive functions (f1, f2,... fn) : N — N” shall also be called a
primitive recursive function. Also, a constant function k : * — N shall also be
called a primitive recursive function because for every k € N, the constant map
may be written as follows:

! 8080---080M

6 Noson S. Yanofsky

where ! is the unique map from N to the one object set * and where there are
k copies of the successor map s in the right hand map.

Let us spend a few minutes reminding ourselves of basic facts about recur-
sion. The simplest form of recursion is for a given integer k& and a function
g : N — N. From this one constructs h : N — N as follows

h(0) =k

h(n+1) = g(h(n)).

A more complicated form of recursion — and the one we shall employ — is
for a given function f : N¥ — N™ and a given function g : N¥ x N™ — N™,
From this one constructs h : N¥ x N — N™ as

h(z,0) = f(z)

h(z,n+1) = g(z, h(z,n))
where € N¥ and n € N.

The most general form of recursion, and the definition usually given for
primitive recursive functions is for a given function f : N¥ — N™ and a given
function ¢ : N¥ x N™ x N — N. From this, one constructs h : N¥ x N — N™

h(x.0) = f(a)

hz,n+1) =gz, h(z,n),n)
where € N¥ and n € N.

We shall use the middle definition of recursion because the extra input vari-
able in g does not add anything substantial. It simply makes things unneces-
sarily complicated. However, we are certain that any proposition that can be
said about the second type of recursion, can also be said for the third type. See
[1] Section 7.5, and [2] Section 5.5.

Although primitive recursive functions are usually described as closed only
under composition and recursion, there is, in fact, another implicit operation,
bracket, for which the functions are closed. Given primitive recursive functions
f:Nf¥ — Nandg: N — N, there is a primitive recursive function h =
(f,g) :N¥ — N x N. h is defined as

hz) = (f(x), 9(x))

for any « € N*. We shall see that having this bracket operation is almost the
same as having a product operation.

In order to save the eyesight of our poor reader, rather than writing too
many exponents, we shall write a power of the set N for some fixed but arbitrary
number as A, B, C etc. With this notation, we may write the recursion operation
as follows: from functions f : A — B and g : A x B — B one constructs
h:AxN-—B.

If f and g are functions with the appropriate source and targets, then we
shall write their composition as h = f o g. If they have the appropriate source
and target for the bracket operations, we shall write the bracket operation as
h = (f,g). We are in need of a similar notation for recursion. So if there are
fiA— Band g: AxB — B we shall write the function that one obtains
from them through recursion as h = fig: AX N — B

We are going to form a directed graph that contains all the descriptions of
primitive recursive functions. We shall call this graph PRdesc. The vertices

Towards a Definition of an Algorithm 7

of the graph shall be powers of the natural numbers N° = x,N, N2 N3, The
edges of the graph shall be descriptions of primitive recursive functions. One
should keep in mind the following intuitive picture.

@kw 4MNT\?2\3/N:*
2.1 Trees

Each edge in PRdesc shall be a labeled binary tree whose leaves are basic
functions and whose internal nodes are labeled by C, R or B for composition,
recursion and bracket. Every internal node of the tree shall be derived from its
left child and its right child. We shall use the following notation:
Composition. gof:A—C

ftA—B ¢g:B—C

Recursion. h=flg:AxN—B

f:A—DB ¢g:AxB—DB

Bracket. (fig) :A—BxC

ffA—B ¢g:A—C

PRdesc has more structure than a simple graph. There is a composition
of edges. Given a tree f : A — B and a tree g : B — C, there is another
tree go f : A — C. It is, however, important to realize that PRdesc is not

8 Noson S. Yanofsky

a category. For three composable edges, the trees ho (go f) and (hog)o f
exist and they perform the same operation, but they are, nevertheless, different
programs and different trees. There is a composition of morphisms, but this
composition is not associative.

Furthermore, for each object A of the graph, there is a distinguished mor-
phism wﬁ :A — A 7 1 A — A is a distinguished map, but it does not act
like an identity. It is simply a function whose output is the same as its input.

2.2 Some Macros

Because the trees that we are going to construct can quickly become large and
cumbersome, we will employ several programming shortcuts, called macros. We
use the macros to improve readability as they can be rewritten as composition,
recursion, and bracket.

Multiple Projections. There is a need to generalize the notion of a projection.
The 7¥ accept k inputs and outputs one number. A multiple projection takes
k inputs and outputs m outputs. Consider A = NF¥ and the sequence X =
(1,2, ..., %) where each x; is in {1,2,...,k} and ¢ # j implies z; # x;. Let
B = N, then for every X there exists WII?I:L = w]‘g} A — B as

A

T = <7TA A A A

v (T s (T 5T,))

In other words, ﬂ]@ outputs the proper numbers in the order described by X.
Whenever possible, we shall be ambiguous with superscripts and subscripts.

Products. We would like a product of two maps. Given f : A — B and
g:C — D, we would like f x g : AxC — B xDD. The product can be defined
using the bracket as

fxg=(fom™" gom™®)

or in terms of trees

fxg:AxC—DBxD

f:A—DB ¢g:C—D

is defined (=) as the tree

Towards a Definition of an Algorithm 9

fxg=(fort*C gont®):AxC —BxD

fomt*C AXxC —B gompXC AXxC —D

////\\\\ ////\\\\

€ AXC—A f:A—B WéXC:AXCHC g:C—D

Diagonal Map. A diagonal map will be used. A diagonal map is a map
A A — A x A where — (z,2). It can be defined as

A:A— AxA = (i,) T A — A x A

ﬂ'ﬁ:A—H& Wﬁ:A—M&

We took the bracket operation as fundamental and from the bracket opera-
tion we derived the product operation and the diagonal map. We could have just
as easily taken the product and the diagonal as fundamental and constructed
the bracket as

A (1:9) BxC

A x A.

We chose to do it this way, simply because the bracket is one operation as
opposed to using both the product and the diagonal map.

Twist Map. We shall need to switch the order of inputs and outputs. The
twist map shall be defined as

twA$B:W§XBXW§XB:AXE—>BXA.

Or in terms of trees:

10 Noson S. Yanofsky

twap : AXB — BxA = WQXEXFQXB:AXB%BXA

P]

WQXB:AXB—»B ﬂﬁXB:AXB—»A

Second Variable Product. Given a function g; : A x B — B and a function
g2 : A xB — B, we would like to take the product of these two functions while
keeping the first variable fixed. We define the operation

g1 X¥g :AXxBxB—BxB
on elements as follows
(91 ¥ g2)(a, b1, b2) = (91(a, b1), g2(a, b2)).
In terms of maps, X may be defined from the composition of the following maps:
918 ga = (g1 X g2) o (mp X twap x mg) 0 (A X Tpip) :

AXBXxB—AXAXBxB—AXBxAxB—BxDB.

Since the second variable product is related to product which is derived from

the bracket, we write it as
G1Xg :AXxBxB—BxDB

g :AXxB—B g :AxB—DB

Second Variable Composition. Given a function g; : A XD — B and a
function g3 : A x C — D, we would like to compose the output of g into the
second variable of g;. We define the operation

g16g2s : AxC— B
on elements as follows
(91892)(a,) = g1(a, g2(a, c)).
In terms of maps, 6 may be defined as the composition of the following maps
91892 = (g1) o (74 X g2) 0 (A x 7E)
AXC—AXAXC—AXD—B

Towards a Definition of an Algorithm 11

We write second variable composition as
91692 :AxC—B

g :AxC—D g :AxD—DB

3 Relations

Given the operations of composition, recursion and bracket, what does it mean
for us to say that two descriptions of a primitive recursive function are “es-
sentially” the same? We shall examine these operations, and give relations to
describe when two trees are essentially the same. If two trees are exactly alike
except for a subtree that is equivalent to another tree, then we may replace the
subtree with the equivalent tree.

3.1 Composition

Composition is Associative. That is, for any three composable maps f, g
and h, we have

ho(gof)~(hog)of.

In terms of trees, we say that the following two trees are equivalent:

ho(gof):A—D R~ (hog)of:A—D
gof:A—C h:C—D f:A—B hog:B—D

Py Py

ftA—DB ¢g:B—C g:B—C h:C—D

Projections as Identity of Composition. The projections wﬁ and W]% act
like identity maps. That means for any f : A — B, we have

A B
fomy~ frmgof.

In terms of trees this amounts to
ford:A—B ~ f:A—DB = meof:A—B

A —A f:A—B f:A—B 72:B—B

12 Noson S. Yanofsky

Composition and the Null Function. The null function always outputs a
0 no matter what the input is. So for any function f: A — N, if we are going
to compose f with the null function, then f might as well be substituted with
a projection, i.e.,
nofaxno WNA.
In terms of trees:
nof:A—N R now@:&—ﬂ\l.

f:A—N n:N—N WQZA—J\I n:N—N

fi f2 o S
Notice that the left side of the left tree is essentially “pruned.” Although

there is much information on the left side of the left tree, it is not important.
It can be substituted with another tree that does not have that information.

3.2 Composition and Bracket

Composition Distributes Over the Bracket on the Right. For g : A —
B, fi:B— C;y and f5 : B — C,, we have

<f17f2>og% <flogvf20.g>'

In terms of procedures, this says that doing g and then doing both f; and f5 is
the same as doing both f; o g and f5 o g, i.e., the following two flowcharts are
essentially the same.

Q

fi fi P

In terms of trees, this amounts to saying that this tree
<f17f2>og:A—>(C1 X (CQ

gA—>B <f1,f2>ZB—>(C1><(C2

fli]B—>(C1 fgIB—>CQ

Towards a Definition of an Algorithm 13

is equivalent (=) to this tree

(ficg, faog): A— Cy xCy

T

fiog:A—C J2og: A —Cy

g:A—B fi:B—C; g:A—B fo:B—Cs
It is important to realize that it does not make sense to require composition
to distribute over bracket on the left:

o (f1,f2) * (go fi,g0 f2).

The following two flowcharts are not essentially the same.

f1 fo fi
g g g

The left g requires two inputs. The right g’s only require one.

3.3 Bracket

Bracket is Associative. The bracket is associative. For any three maps f, g,
and h with the same domain, we have

(fr9),h) = (f (g9, h))

In terms of trees, this amounts to
(£ 9)h) - A—>B><<C><1D> ~ (g h) A—>Bx<cxm>

/\ /\

(f,g) :A——BxC h:A—D fiA—B ‘B_sCxD

f:A—DB ¢g:A—C g:A—C h:A—D

14 Noson S. Yanofsky

Bracket is Almost Commutative. It is not essential what is written in the
first or the second place. For any two maps f and g with the same domain,

(f.g) =two (g, f).

In terms of trees, this amounts to
(f,g) :A—BxC ~ two (g, f):A— B xC

fiA—B g:A—C
(9,f):A—CxB tw:CxB—BxC

g:A—C f:A—DB

Twist is Idempotent. There are other relations that the twist map must
respect. Idempotent means

twy g otwyp ~ ﬂﬁig A XB— A XxB.

Twist is Coherent. We would like the twist maps of three elements to get
along with themselves.

(t’wmg,(c X 7TA) o (7‘(‘]3 X t’u}A,c) o (thB X 7'('([;) ~ (TF(C X twA,m;) o (thc X 7T]B) o (ﬂ'A X t’LU]B;7([;).
This is called the hexagon law or the third Reidermeister move. Given the
idempotence and hexagon laws, it is a theorem that there is a unique twist map

made of smaller twist maps between any two products of elements ([9] Section
X1.4).

Bracket and Projections. A bracket followed by a projection onto the first
output means the second output is ignored.

frap*Co(f,g)

In terms of trees, this amounts to

Towards a Definition of an Algorithm 15

f:A—B

Q

msCo(f9):A—B

(f.g) :A—BxC €. BxC—B

f:A—B ¢g:A—C

Similarly for a projection onto the second output.

g~12Co(f,q)

g:A—C ~ m2*Co(f,g) : A — C

C

<f7g>2A—>BX(C WEXC:BXC%C

ftA—DB ¢g:A—C

3.4 Bracket and Recursion

When there are two unrelated processes, we can perform both of them in one
loop or we can perform each of them in its own loop.

h = (fi(x), fa(z)) hi = fi(x) he = fa(z)

Fori=1ton Fori=1ton Fori=1ton
h = (g1(z,m1h), g2(z, m2h)) hi = gi1(z, h) ha = ga(w, ha)

Q

In £ notation this amounts to saying
h=(f1, f2)8(g1 W g2) = (f1g1, [28g2) = (ha, ha).

In terms of trees this says that this tree:

16 Noson S. Yanofsky

h=({f1, fa)(g1 Xg2)) : AXxN—BxB

(fi,f2) :A—BxB g1Ngp:AxBxB—BxB

f:ATSB f:A-—B /\

gliAXBHB QQZAXIBH]B

pe

is equivalent (=) to this tree:

(h1,he) = (fiflg1, follge) : Ax N — B x B

3.5 Recursion and Composition

Unwinding a Recursive Loop. Consider the following two algorithms

_ h/:gl(xaf(’r))
h= f(ac) For i =1 to n-1
Fori=1ton W= g,)

h = gl(.%', h) h/ _ gl<x7 h/)

h = 92(17a h) B = gg(l‘ h;)

This is the most general form of unwinding a loop. If g; is the identity
process (does nothing), these become

— W= f(x)
h = f(x) For i = 1 to n-1
Fori=1ton W = go(x, W)
h=gale,h) W = galar.).

If go is the identity process, these become

Towards a Definition of an Algorithm 17

h= f(z) h' = gi(z, f(z))
Fori=1ton For v =1 to n-1
h = gi(z,h)) W= gi(z,h).

In terms of recursion, the most general form of unwinding a loop, the left
top box coincides with

h(z,0) = f()

h(w.n+1) = go(@, 1 (w, h(w, m))).
The right top box coincides with:

hl(xa O) = gl(xa f(l‘))

h/(ma n+ 1) = gl(Ia 92(x7 h/($7 ’I’L)))
How are these two recursions related? We claim that for all n € N

g1(z, h(z,n)) = h'(z,n).

This may be proven by induction. The n = 0 case is trivial. Assume it is true
for k, and we shall show it is true for k + 1.

gl(m7h(x7k+1)) = gl(x,gg(x,gl(x,h(x, k)))) = gl($7gg($,h/($,k))) = h/(ka"_l)

The first equality is from the definition of h; the second equality is the induction
hypothesis; and the third equality is from the definition of A'.

Although g16h and g are constructed differently, they are essentially the
same program and hence the same algorithm and for any input, they output
the same numbers. So we shall set them equivalent to each other:

gi5h ~ I

If one leaves out the A and A’ and uses the # notation, this becomes

915(f1(g2591)) =~ (915 f)8(g1592).

In terms of trees, this means that
g16h : AXN—B

h:AxN—DB g1 :AxB—B

f:A— B g26g1 : A X B — A

gziAXB—>B gllAXE—>B

18 Noson S. Yanofsky

is equivalent (=) to

h:AxN-—DB

gi6f : A — B g16g2 : Ax B — B

f:A—B g:AxB—B 4, . AxB—B ¢ :AxB—B

Recursion and Null. If A is defined by recursion from f and g, i.e. h = fig,
then by definition of recursion

h(z,0) = f(x)
or
h(z,n(y)) = f(x)
where n is the null function and y € N. Or hén = f. We shall set these

equivalent
hon =~ f

Using the § notation, this amounts to:
(fig)on ~ f.

In terms of algorithms, this amounts to saying that the following two algorithms
are equivalent:

h= f(z)
Fori= 0to 0 %’h:f(x)
h=g(z,h)
In terms of trees, this is
(hén): A — B ~ f:A—B
n:N—N h:AxN-—DB

f:A—B ¢g:AxB—DB

Towards a Definition of an Algorithm 19

Notice that the g on the left tree is not on the right tree.

Recursion and Successor. Let h be defined by recursion from f and g, i.e.
h = ffig. Then by definition of recursion

h(z, k+1) = g(z, h(z, k))

or

Wz, s(k)) = g(x, h(z, k))

where s is the successor function and k£ € N. Or hos = goh. We shall set these
equivalent

hés = géh
Using the f notation, this becomes.

(f19)5s =~ g&(f1g).

In terms of algorithms, this says that the following two algorithms are equivalent

— h= f(x)
h—f(x) Fori=1tok
Fori=1to k+1 = h = g(z, h)

h:g(xah) h:g(:E h;

In terms of trees, this says that the tree
hoés: AxN —N

s:N— N h:AxN-—DB

R]

f:A—DB ¢g:AxB—DB

is set equivalent = to the tree

20 Noson S. Yanofsky

géh: AxXxN—N

g:AxB—DB

f:A—B ¢g:AxB—DB

3.6 Products

The product is associative. That is for any three maps f : A — A/
g:B— B and h: C — C’ the two products are equivalent:

fx(gxh)~(fxg)xh:AxBxC— A"xB xC'.

This follows immediately from the associativity of bracket.

Interchange Rule. We must show that the product and the composition
respect each other. In terms of maps, this corresponds to the following situation:

Al<—"—— A xB —"— =B

p
/
h

faof1 | A2<—WA2XBQW—>B2

fa

\

AgéA3XB3ﬂ—>Bg

fixg1

faxgz2

92

\

N\

\

1 92091

/

P4

(f2 x g2) o (f1 x g1) and (f2 0 f1) X (g2 0 g1) are two ways of getting from
A1 x By to Az x B3. We shall declare these two methods equivalent:

(fa x g2) o (f1 x g1) = (fao f1) X (g20491).

In terms of trees, this tree:

Towards a Definition of an Algorithm 21

(fax g2)o(fi xg1):Ar x By — Az x B3

f1X91:A1XBl—>A2XB2 fQnglAQX]BQ—>A3XB3

id
T T

f12A1—>A2 gllﬂgl—>B2 f22A2—>A3 gQZBQ—>B3
is equivalent (=) to this tree:

(faoo f1) x (g2001) : Ay x By — Az x B3

faofi: A — Ag g20g1: By — B3

fii A — Ay fo:Ay— A3 g :B — By go:By— Bs.

)

One should realize that this equivalence is not anything new added to our
list of equivalences. It is actually a consequence of the definition of product and
the equivalences that we assume about bracket. In detail

(f2 X g2) o (f1 x g1) = (fem, gom) o (fim,17) = (for(f1m, g170)), gow(f170, 17))

~ (fao fim,g20g1m) = (fa 0 f1) x (920 91).
The first and the last equality are from the definition of product. The first
equivalence comes from the fact that composition distributes over bracket. The
second equivalence is a consequence of the relationship between the projection
maps and the bracket.

4 Algorithms

We have given relations telling when two programs/trees/descriptions are simi-
lar. We would like to look at the equivalence classes that these relations gener-

Noson S. Yanofsky

ate. The relations split up into two disjoint sets: those for which there is a loss
of information and those for which there is no loss of information. Let us call
the former set of relations (I) and the latter set (II). The following relations
are in group (I).

1. Null Function and Composition: no f ~ nomh
2. Bracket and First Projection: f = mp <“(f, g)
3. Bracket and Second Projection: g =~ 72 “(f, g)
4. Recursion and Null Function: (f#g)én =~ f

After setting these trees equivalent, there exists the following quotient graph

and graph morphism.

PRdesc PRdesc/(I)

In detail, PRdesc/(I) has the same vertices as PRdesc, namely powers of
natural numbers. The edges are equivalence classes of edges of PRdesc.

Descriptions of primitive recursive functions which are equivalent to “pruned”

descriptions by relations of type (I) we shall call “stupid programs”. They are
descriptions that are wasteful in the sense that part of their tree is dedicated
to describing a certain function and that function is not needed. The part of
the tree that describes the unneeded function can be lopped off. One might call
PRdesc/(I) the graph of “intelligent programs” since within this graph every
“stupid program” is equivalent to another program without the wastefulness.

We can further quotient PRdesc/(I) by relations of type (II):

1. Composition Is Associative: fo (goh)~ (fog)oh.

2. Projections Are Identities: f o7} ~ f ~ 7L o f.

3. Composition Distributes Over Bracket: (f1, f2) o g~ (f10g, f2 o g).
4. Bracket Is Associative: (f,{g,h)) =~ ((f,g),h).

5. Bracket Is Almost Commutative: (f, g) =~ tw o (g, f).

6. Twist Is Idempotent: tw o tw = 7.

7. Reidermeister III:
(twgﬁcxﬂA)O(ﬂ'B thA,C)O(twA,IB X?T(c) =~ (mcXt’LUAy]B)O(t’LUAy(CXWB)O(WAXt’LU]B7c).
8. Recursion and Bracket: (f1, f2)1(g1 X g2) = (f14g1, folig2)-

9. Recursion and Composition: g15(ff(g2391)) ~ (g15f)f(g1392)-

10. Recursion and Successor Function: (ftg)ds ~ ¢d(ftg).

Towards a Definition of an Algorithm 23

There is a further projection onto the quotient graph:

PRdesc PRdesc/(I) PRalg = (PRdesc/I)/I1 = PRdesc/((I) J(II)).

PRalg, or primitive recursive algorithms, are the main object of interest in this
Section.

What does PRalg look like? Again the objects are the same as PRdesc,
namely powers of natural numbers. The edges are equivalence classes of edges
of PRdesc.

What type of structure does it have? In PRalg, for any three composable
arrows, we have

folgoh)=(fog)oh
and for any arrow f : A — B we have

foﬂ'ﬁ:f:ﬂ'%of.

That means that composition is associative and that the n’s act as identities.
Whereas PRdesc was only a graph with a composition, PRalg is a genuine
category.

PRalg has a strictly associative product. On objects, the product structure
is obvious:

N x N" = N"™+",
On morphisms, the product x was defined using the bracket above. The 7 are
the projections of the product. In PRalg the twist map is idempotent and
coherent. The fact that the product respects the composition is expressed with
the interchange rule.

The category PRalg is closed under recursion. In other words, for any
f:A— Band any g : A x B — B, there exists a unique h : Ax N — B
defined by recursion. The categorical way of saying that a category is closed
under recursion, is to say that the category contains a natural number object.
The simplest definition of a natural number object in a category is a diagram

* 0 N s N

such that for any £ € N and g : N — N, there exists a unique h : N — N such
that the following diagram commutes:

: N
h lh

k
N.

N g9

(see e.g. [1, 2, 9]). Saying that the above diagram commutes is the same as
saying that h is defined by the simplest recursion scheme.

24 Noson S. Yanofsky

For our more general version of recursion, we require for every f: A — B
and g : AxB — B there exists a unique i : AxN — B such that the following
two squares commute:

Axs—" _AxN AxN—"% _AxN
0 h (m N) h
A - B AxB——>B

This is sometimes called a natural number object with parameters.
From the fact that in PRalg, we have an object N and the morphisms
0:+* — Nand s: N — N and these maps satisfy

hén = (fig)én = f

and
hds = (ftg)és = g3(ftg) = gdh
we see that PRalg has a natural number object.
We must show that in PRalg, the natural number object respects the

bracket operation. This fundamentally says that the central square in the fol-
lowing two diagrams commute.

A x % 0 AxN
\\\\ //4{
l A]B <h17h2
f1
¢ / \ ho
A (f1,f2) BxB
A 7 B

The left hand triangles commute from the fact that * is a terminal object. The
right hand triangles commute because the equivalence relation forced the pro-
jections to respect the bracket. The inner and outer quadrilateral are assumed

Towards a Definition of an Algorithm 25

to commute. We conclude that the central square commutes.

N TXS
\

2 AxB

g1
l /

AxBxB

A x x N

A
A

B (h1,ha
B

x B

91Xg2

AxB

92

Similarly, the left and the right triangles commute because the projections act
as they are supposed to. The inner and outer quadrilateral commute out of
assumption. We conclude that central square commutes.

We also must show that the natural number object respects the composition
of morphisms. In f notation this amounts to

915(f1(g2591)) = (915f)8(91592).

For the simpler form of recursion, this reduces to

g1 0 (kfi(g2 0 91)) = (g1 © k)i(g1 © g2)-

Setting h = kfi(g2 0 g1) and b/ = (g1 o k)f(g1 © g2), we get the following natural
number object diagram

0
* N s

N
keooon \ / \
1 B 92 B g1 B.

B

g

From the uniqueness of h and h’ we get that the triangles commute.

26 Noson S. Yanofsky

Once we have PRalg, we might ask when do two algorithms perform the
same operation. We make an equivalence relation and say two algorithms are
equivalent (/') iff they perform the same operation. By taking a further quotient
of PRalg we get PRfunc. What does PRfunc look like. The objects are again
powers of natural numbers and the morphisms are primitive recursive functions.

In summary, we have the following diagram.

PRdesc

PRdesc/(I)

PRalg = PRdesc/((I) U(II))

PRfunc = PRalg/ ~' .

Let us spend a few moments discussing some category theory. There is the
category Cat of all (small) categories and functors between them. Consider also
the category CatXN. The objects are triples, (C, x, N) where C is a (small)
category, X is a strict product on C and N is a natural number object in C.
The morphisms of CatXN are functors F : (C,x,N) — (C’, x’, N’) that
respect the product and natural number object. For F': C — C’ to respect
the product, we mean that

For all f,g€ C F(f xg)=F(f)x' F(g).
To say that F' respects the natural number object means that if

% 0 N s N

is a natural number object in C and

o’ s’
« N’

N/

is a natural number object in C’ then F(N) = N’,F(x) = «/, F(0) = 0’ and
F(s) = s'. For a given natural number object in a category, there is an implied

Towards a Definition of an Algorithm 27

function f that takes two morphisms f and g of the appropriate arity and outputs
the unique h = ffg of the appropriate arity. Our definition of a morphism
between two objects in CatXN implies that

For all appropriate f,g € C F(ftg) = F(f)i' F(g).

There is an obvious forgetful functor U : CatXN — Cat that takes
(C,x,N) to C. There exists a left adjoint to this forgetful functor:

L
CatZ___ L CatXN.

U

This adjunction means that for all small categories C € Cat and D € CatXIN
there is an isomorphism

CatXN(L(C),D) ~ Cat(C,U(D)).
Taking C to be the empty category @ we have
CatXN(L(0),D) ~ Cat(, U(D)).

Since () is the initial object in Cat, the right set has only one object. In other
words L(0) is a free category with product and a natural number object and it
is the initial object in the category CatXN.

We claim that L(0) is none other then our category PRalg.

Theorem 1 PRalg is a free initial object in the category of categories with a
strict product and a natural number object.

We have already shown that PRalg is a category with a strict product
and a natural number object. It remains to be shown that for any object
(D, x,N’) € CatXN there is a unique functor Fp : PRalg — D. Our task
is already done by recalling that the objects and morphisms in PRalg are all
generated by the natural number object and that functors in CatXN must
preserve this structure. In detail, Fp(N) = N’ and since Fp must preserve
products Fp(N?) = (N’)’. And similarly for the morphisms of PRalg. The
morphisms are generated by the ms, the n and s in the natural number object
of PRalg. They are generated by composition, product and recursion. Fp is
a functor and so it preserves composition. We furthermore assume it preserves
product and recursion. (D, x, N’') € CatXN might have many more objects and
morphisms but that is not our concern here. PRalg has very few morphisms.

The point of this theorem is that PRalg is not simply a nice category where
all algorithms live. Rather it is a category with much structure. The structure
tells us how algorithms are built out of each other. PRalg by itself is not very
interesting. It is only its extra structure that demonstrates the importance of
this theorem. PRalg is not simply the category made of algorithms, rather, it
is the category that makes up algorithms.

28 Noson S. Yanofsky

PRfunc is the smallest category with a strict product and a natural number
object. However, it is important to realize that PRfunc is not free. One
function can be constructed in two totally different ways. The result of these
two different constructions will be the same function. This is in contrast to
PRalg, where two different constructions yield two different algorithms.

Before we go on to other topics, it might be helpful to, literally, step away
from the trees and look at the entire forest. What did we do here? The graph
PRdesc has operations. Given edges of the appropriate arity, we can compose
them, bracket them or do recursion on them. But these operations do not
have much structure. PRdesc is not even a category. By placing equivalence
relations on PRdesc, which are basically coherence relations, we are giving the
quotient category better and more amenable structure. So coherence theory,
sometimes called higher-dimensional algebra, tells us when two programs are
essentially the same.

5 Complexity Results

An algorithm is not one arrow in the category PRalg. An algorithm is a scheme
of arrows, one for every input size. We need a way of choosing each of these
arrows.

There are many different species of algorithms. There are algorithms that
accept m numbers and output one number. A scheme for such an algorithm
might look like this:

Nl
c1 N?
P
N NE
RN
c4
Nk c N4

We shall call such a graph a star graph and denote it % .

However there are other species of algorithms. There are algorithms that
accept n numbers and output n numbers (like sorting or reversing a list, etc.)

Towards a Definition of an Algorithm 29

Such a scheme looks like

Nl %Nl

NQ $>N2

N3 #NB

We shall also call such a graph a star graph.

One can think of many other possibilities. For example, algorithms that
accept n numbers and outputs their max, average and minimum (or mean,
median and mode) outputs three numbers. We shall not be particular as to
what what type of star graph we will be working with.

Given any star graph %, a scheme that chooses one primitive recursive
description for each input is a graph homomorphism Sch : % — PRdesc that
is the identity on vertices. That is Sch(N*) = N* for all ¢ € N.

Composing Sch : % — PRdesc with the projection onto the equiva-
lence classes PRdesc — PRdesc/(I) gives a graph homomorphism % —
PRdesc/(I). In order not to have too many names flying around, we shall also
call this graph homomorphism Sch. Continuing to compose with the projec-

30 Noson S. Yanofsky
tions, we get the following commutative diagram.

PRdesc

Sch

PRdesc/(I)
Sch

Sch

g

PRalg
Sch

PRfunc.

We are not interested in only one graph homomorphism % — PRdesc.
Rather we are interested in the set of all graph homomorphisms. We shall call
this set PRdesc*. Similarly, we shall look at the set of all graph homomor-
phisms from % to PRdesc/(I), which we shall denote (PRdesc/(I))*. There
is also PRalg* and PRfunc*. There are also obvious projections:

PRdesc* — (PRdesc/(I))* — PRalg* — PRfunc*

Perhaps it is time to get down from the abstract highland and give two
examples. We shall present mergesort and insertion sort as primitive recursive
algorithms. They are two different members of PRalg*. These two different
algorithms perform the same function in PRfuncX.

Example: Mergesort depends on an algorithm that merges two sorted lists into
one sorted list. We define an algorithm Merge that accepts m numbers of the
first list and n numbers of the second list. Merge inputs and outputs m + n
numbers.

Mergep1(z1) = Merge o(x1) = 7 (x1) = 13

Mergem n(T1,%2, ..., Tmy Tt 1, - - - Tmtn) =

(Mergemn—1(1,22,. .. Tm, T4, - s Eman—1):Tn) : Tm < Ty
(Mergem—1m(1,%2, . s Tm—1, Tm41s - Tman)s Tm) © Tm > Tp

Towards a Definition of an Algorithm 31

With Merge defined, we go on to define MergeSort. MergeSort recursively
splits the list into two parts, sorts each part and then merges them.

MergeSort, (z) = ny(x) = x

MergeSorty(x1,xa, ..., x) =

Merge, iz, rij2(MergeSort o (1,2, .., T k/2,), MergeSortri o (T k/2,415 Tikj2.425 - - -

We might write this in short as

MergeSort = Merge o (MergeSort, MergeSort)

Example: Insertion sort uses an algorithm Insert : N¥ x N — NF*+1 which
takes an ordered list of £ numbers adds a k + 1th number to that list in its
correct position. In detail,

Inserty(z) = mi(z) =

Inserty(xy,22,. .., Tk, T) =
(x1,29,...,2k,2) s ap<uw
(Inserti—1(x1,T2, ..., Tp-1,2),T) : Tk >T

The top case is the function 7F x 7} and the bottom case is the function

(Inserty_1 X m) o (W’gj X twy). With Insert defined, we go on to define
InsertionSort.

InsertionSort,(z) = n\(z) = x

InsertionSort(x1,xa, ..., x) = Inserty_1(InsertionSorti_1(x1,z2, ..., Tk-1),Tk)

We might write this in short as
InsertionSort = Insert(InsertionSort x)

O

The point of the these examples, is to show that although these two algo-
rithms perform the same function, they are clearly very different algorithms.
Therefore one can not say that they are “essentially” the same.

Now that we have placed the objects of study in order, let us classify them via
complexity theory. The only operations in our trees that are of any complexity
is the recursions. Furthermore, the recursions are only interesting if they are
nested within each other. So for a given tree that represents a description of a
primitive recursive function, we might ask what is the largest number of nested

7xk)

32 Noson S. Yanofsky

recursions in this tree. In other words, we are interested in the largest number
of “R” labels on a path from the root to a leaf of the tree. Let us call this the
Rdepth of the tree.

Formally, Rdepth is given recursively on the set of our labeled binary trees.
The Rdepth of a one element tree is 0. The Rdepth of an arbitrary tree T is

Rdepth(T) = Max {Rdepth(left(T)), Rdepth(right(T))} + (label(T) == @)

where (label(T) == @) = 1 if the label of the root of T is @, otherwise it is
0.

It is known that a primitive recursive function that can be expressed by a
tree with Rdepth of n or less is an element of Grzegorczyk’s hierarchy class
Entl. (See [4], Theorem 3.31 for sources.)

Complexity theory deals with the partial order of all functions {f|f : N —
R*} where

f(n)

f<giff Lim,_oco—— <

g(n)
For every algorithm we can associate a function that describes the Rdepth

of the trees used in that algorithm. Formally, for a given algorithm, A : % —
PRdesc, we can associate a function f4 : N — R where

fa(n) = Rdepth(A(cn))

when ¢, is an edge in %. The function PRdesc* — {f|f : N — R*} where
A — f4 shall be called Rdepthy.
We may extend Rdepthg to

Rdepth; : (PRdesc/(I1))* — {f|f:N — RT}.
For a scheme of algorithms [A] : % — (PRdesc/(I)) we define
fray(n) = Mina {Rdepth(A'(c,))}

where the minimization is over all descriptions A’ in the equivalence class [A].
(For the categorical cognoscenti, Rdepth, is a right Kan extension of Rdepthg
along the projection PRdesc* — (PRdesc/(I))*.

Rdepth; can easily be extended to

Rdepthsy : PRalg* — {f|f:N — R*}.

The following theorem will show us that we do not have to take a minimum
over an entire equivalence class.

Theorem 2 FEquivalence relations of type (II) respect Rdepth.

Proof. Examine all the trees that express these relations throughout this paper.
Notice that if two trees are equivalent, then their Rdepths are equal. [

Towards a Definition of an Algorithm 33

Rdepths can be extended to
Rdepths : PRfunc* — {f|f: N — R*}.

We do this again with a minimization over the entire equivalence class (i.e. a
Kan extension.)
And so we have the following (not necessarily commutative) diagram.

PRdesc*

Rdepthg

(PRdesc/(I))*

W)

{fIf :N—R"}

Rdepths

PRalg*

PRfunc*
Corollary 1 The center triangle of the above diagram commutes.

This is in contrast to the other two triangles which do not commute.

In order to see why the bottom triangle does not commute, consider an
inefficient sorting algorithm. Rdepths will take this inefficient algorithm to a
large function N — RT. However, there are efficient sorting algorithms and
Rdepths will associate a smaller function to the primitive recursive function of
sorting.

There are many subclasses of {f|f : N — RT} like polynomials or expo-
nential functions. Complexity theory studies the preimage of these subclasses
under the function Rdepths. The partial order in {f|f : N — R*} induces a
partial order of subclasses of PRfunc.

6 Future Directions

We are in no way finished with this work and there are many directions that it
can be extended.

34 Noson S. Yanofsky

Extend to all Computable Functions. The most obvious project that we
can pursue is extend this work from primitive recursive functions to all com-
putable functions. In order to do this we must add the minimization operation.
For a given g : A x N — N, there is an h : A — N such that

h(z) = Min, {g(z,n) = 1}

Categorically, this amounts to looking at the total order of N. This induces
an order on the set of all functions from A to N. We then look at all functions
gz, h'(z)) = 1.

I’ that make this square commute.
A *
(mf,h') ‘ ‘1
A x N
Let h: A — N be the minimum such function.
We might want to generalize this operation. Let f : A — B and g¢ :
A x N — B, then we define h : A — N to be the function

h(z) = Min, {g(x,n) = f(z)}.

Categorically, this amounts to looking at all functions h’ that make the triangle

!
_ >

N g9

ie.,

commute:
A
WV \
AxN 94> B
ie.,

g(x, W' (x)) = f().
Let h : A — N be the minimum such function.

Hence minimization is a fourth fundamental operation:

h:A—N

f:A—DB ¢g:AXxN-—DB
There are several problems that are hard to deal with. First, we leave the
domain of total functions and go into the troublesome area of partial functions.

Towards a Definition of an Algorithm 35

All the relational axioms have to be reevaluated from this point of view. Second,
what should we substitute for Rdepth as a complexity measure?

Other Types of Algorithms We have dealt with classical deterministic algo-
rithms. Can we do the same things for other types of algorithms. For example,
it would be nice to have universal properties of categories of non-deterministic
algorithms, probabilistic algorithms, parallel algorithms, quantum algorithms,
etc. In some sense, with the use of our bracket operation, we have already dealt
with parallel algorithms.

More Relational Axioms. It would be interesting to look at other relations
that tell when two programs are essentially the same. With each new relation,
we will get different categories of algorithms and a projection from the old
category of algorithms to the new one. With each new relation, one must find
the universal properties of the category of algorithms.

Canonical Presentations of Algorithms. Looking at the equivalent trees,
one might ask whether there a canonical presentation of an algorithm. Perhaps
we can push up the recursions to the top of the tree, or perhaps push the
brackets to the bottom. This would be most useful for program correctness and
other areas of computer science.

In a sense, Kleene’s Theorem on partial recursive functions is an example
of a canonical presentation of an algorithm. It says that for every computable
function, there exists at least one tree-like description of the function such that
the root of the tree is the only minimization in the entire tree.

When are Two Programs Really Different Algorithms. Is there a way
to tell when two programs are really different algorithms? There is a subbranch
of homotopy theory called obstruction theory. Obstruction theory asks when
are two topological spaces in different homotopy classes of spaces. Is there an
obstruction theory of algorithms?

Other Universal Objects in CatXN. We only looked at one element of
CatXN namely PRalg. But there are many other elements that are worthy
of study. Given an arbitrary function f : N — N, consider the category Cy

36 Noson S. Yanofsky

with N as its only object and f as its only non-trivial morphism. The free
CatXN category over Cy is, we believe, the category of primitive recursive
functions with oracle computations from f. It would be nice to frame relative
computation theory and complexity theory from this perspective.

Proof Theory. There are many similarities between our work and the proof
theory. Many times, one sees two proofs that are essentially the same proof. It
would be nice to do the same thing for proofs. Gentzen type proofs are already
set up like trees. The cut rule in proof theory is very similar to composition in a
category. What are the other operations of proofs? We would be very interested
in looking at the universal properties of the category of proofs. What is the
relationship between the category of algorithms and the category of proofs?

A Language Independent Definition of Algorithms. Our definition of
algorithm is dependent on the language of primitive recursive functions. We
could have, no doubt, done the same thing for other languages. The intuitive
notion of an algorithm is language independent. Can we find a definition of an
algorithm that does not depend on any language?

Permit me to get a little “spacey” for a few lines. Consider the set of all
programs in all programming languages. Call this set Programs. Partition
this set by the different programming languages that make the programs. So
there will be a subset of Programs called Java, a subset called C++, and a
subset PL/1 etc. There is also a subset called Primitive Recursive which
will contain all the trees that we discussed in Section 3. There will be functions
between these different subsets. We might call these functions (non-optimizing)
compilers. They take as input a program from one programming language and
output a program in another programming language. In some sense Primitive
Recursive is initial for all the these sets. By initial we mean that there are
compilers going out of it. There are few compilers going into it. The reason
for this is that in C++ one can program the Ackerman function. One can not
do this in Primitive Recursive. (There are, of course, weaker programming
languages than primitive recursive functions, but we ignore them here.)

For each subset of programs, e.g. Progsl, there is a an equivalence relation
RProgs1 O ~1 that tells when two programs in the subset are essentially the
same. If C is a compiler from Progsl to Progs2 then we demand that if two
programs in Progs1 are essentially the same, then the compiled versions of each
of these programs will also be essentially the same, i.e., for any two programs
P and P’ in Progsl,

P =~ P = C(P) QQC(P/)

We also demand that if there are two compilers, then the two compiled programs

Towards a Definition of an Algorithm 37

will be essentially the same,
For all programs P, C(P) =~ C'(P).

Now place the following equivalence relation = on the set Programs of all
programs. Two programs are equivalent if they are the in the same programming
language and they are essentially the same, i.e.,

P = P’ if there exists a relation =~; such that P ~; P’

and two programs are equivalent if they are in different programming languages
but there exists a compiler that takes one to the other,

P = P’ if there exists a compiler C' and C(P) = P'.

We have now placed an equivalence relation on the set of all programs that
tells when two programs are essentially the same. The equivalence classes of
Programs/= are algorithms. This definition does not depend on any preferred
programming languages. There is much work to do in order to formulate these
ideas correctly. It would also be nice to list the properties of Algorithms =
Programs/=.

References

[1] M. Barr and C. Wells. Toposes, triples and theories. Grundlehren der Math-
ematischen Wissenschaften, 278. Springer-Verlag, New York, (1985).

[2] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall (1990).

[3] A. Blass, Y. Gurevich. “Algorithms: A Quest for Absolute Definitions.”
Available on the web.

[4] P. Clote. Computational Models and Function Algebras. Handbook of Com-
putability Theory.

[5] T.H. Corman, C.E. Leiserson, R.L. Rivest, C. Stein; Introduction to Algo-
rithms, Second Edition. McGraw-Hill (2002).

[6) W. Dean. What algorithms could not be. 2006 Thesis in Department of
Philosophy. Rutgers University.

[7] D.E. Knuth. The Art of Computer Programing: Volume 1 / Fundamental
Algorithms. Third Edition. Addison-Wesley. 1997.

[8] D.E. Knuth. Selected Papers on Computer Science. Cambridge University
Press. 1996.

[9] Saunders Mac Lane. Categories for the Working Mathematician, Second
Edition. Springer, 1998.

38 Noson S. Yanofsky

[10] Y.N. Moschovakis. “What Is an Algorithm?” Awvailable on his web page.

Department of Computer and Information Science
Brooklyn College, CUNY
Brooklyn, N.Y. 11210

Computer Science Department
The Graduate Center, CUNY
New York, N.Y. 10016

e-mail: noson@sci.brooklyn.cuny.edu

