
cisc3120

design and implementation of software applications I

spring 2015

lecture # I.1

instructor email:

• Arif T. Ozgelen, ozgelen@sci.brooklyn.cuny.edu

course web page:

• http://www.sci.brooklyn.cuny.edu/~ozgelen/cisc3120/

office Hours:

• Room: Roosevelt Hall Rm. 233

• Time (TBA): Mondays 9.30am - 10.30am OR Wednesdays 9.30am - 10.30am

• By Appointment Only!

topics:

• introduction to the course

• introduction to java, part 1

cisc3120-spring15-ozgelen-lecI.1 1

introduction to the course

• about this course

– intended to give you hands-on experience designing and building a software application

• topics covered:

(I) Object-Oriented Programming (OOP) concepts

(II) Graphical User Interfaces (GUI)

(III) Computer Graphics

(IV) Net-centric Systems

(V) Software Design Concepts

cisc3120-spring15-ozgelen-lecI.1 2

course material

• textbook (RECOMMENDED not Required!): Core Java Volume 1 - Fundamentals 9th

Edition by Cay Horstmann and Gary Cornell, Prentice Hallamawww

• Lecture notes (based on notes provided by Prof. Sklar and Prof. Weiss) and other online

sources (Check the course website for updates)

cisc3120-spring15-ozgelen-lecI.1 3

course structure

• 3 units

• each unit has:

– lectures

– labs

– assignment

• your grade =

– assignments + projects (55% total)

– midterm (20%)

– final (25%)

cisc3120-spring15-ozgelen-lecI.1 4

Java.

• Java is an object-oriented language: it is structured around objects and methods, where a

method is an action or something you do with the object

• Java programs are divided into entities called classes

• some Java classes are native

but you can also write classes yourself

• Java programs can run as applications or applets

cisc3120-spring15-ozgelen-lecI.1 5

Java language features I

• Simple : Java omits the rarely used and confusing features of C++.

• Object-oriented : focuses on the data and the interfaces to that object.

• Network-Savvy: extensive library for networking making it easy to cope with protocols.

• Robust : utilizes a pointer model that eliminates the possibility of overwriting or

corrupting memory.

• Secure : enables construction of virus-free systems.

cisc3120-spring15-ozgelen-lecI.1 6

Java language features II

• Architecture neutral : compiler generates bytecode which can be interpreted on any

machine.

• Portable : there are no implementation dependent aspects; the sizes of primitive data

types are specified.

• Interpreted : The Java Virtual Machine (JVM) can interpret bytecodes directly on any

machine that it can be ported.

• High Performance : The performance of the interpreted bytecodes are more than

adequate. Just-in-time compilers can translate frequently accessed parts of the code into

machine code for improved performance.

cisc3120-spring15-ozgelen-lecI.1 7

overview of Java technology

• JDK Java Development Kit: The software for programmers who want to write Java

programs.

• JRE Java Runtime Environment : The software to run Java programs. Made up of JVM

and appropriate application programming interfaces (APIs, source code based software

specifications).

• SE Standard Edition : Java platform for use on desktops and simple server applications.

• EE Enterprise Edition : Java platform for complex server applications.

• ME Micro Edition : Java platform for cell phones and other small devices.

• NetBeans : Sun’s integrated development environmet (IDE).

cisc3120-spring15-ozgelen-lecI.1 8

installing Java

• For this class you will need to install Java SE 8.

• Go to the website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html and download

Java SE 8 Update 31 - JDK

• JDK includes the JRE.

• Follow the installation instructions.

• Make sure to set the PATH and CLASSPATH environment variables correctly.

cisc3120-spring15-ozgelen-lecI.1 9

compiling and running Java applications

• java programs are compiled into bytecodes.

$> javac program.java

• the output of the above operation is program.class.

• the other type of java bytecode is .jar files, which we will discuss later.

• to run the program as an application, invoke the Java Virtual Machine (JVM) which will

interpret the bytecode.

$> java program

cisc3120-spring15-ozgelen-lecI.1 10

our first application.

“hello world”

• typical first program in any language

• output only (no input)

cisc3120-spring15-ozgelen-lecI.1 11

the application source code.

file name = Hello.java

/*--

Hello.java

This class demonstrates output from a Java application.

--*/

public class Hello {

public static void main(String[] args) {

System.out.println("hello world!");

}

}

cisc3120-spring15-ozgelen-lecI.1 12

output.

• methods

System.out.println()

System.out.print()

• arguments

– those things inside the parenthesis ()

– one or more Strings, separated by “+” ’s

– escape sequences: \n, \t

– also called parameters. more accurately in:

void foo(int i) { ... }

...

foo(5)

i is a formal parameter, while ’5’ is the actual argument

• example

System.out.println("The quick" + ", brown " + "fox");

cisc3120-spring15-ozgelen-lecI.1 13

things to notice.

• file name is same as class name

• Java is CASE sensitive

• punctuation is really important!

• whitespace doesn’t matter for compilation

• BUT whitespace DOES matter for readability of your code!

cisc3120-spring15-ozgelen-lecI.1 14

data types and storage.

• programs = objects + methods

• objects = data

• data must be stored

• all storage is numeric (0’s and 1’s)

cisc3120-spring15-ozgelen-lecI.1 15

memory.

• think of the computer’s memory as a bunch of boxes

• inside each box, there is a number

• you give each box a name

⇒ defining a variable

• example:

program code:

int x;

computer’s memory:

x →

cisc3120-spring15-ozgelen-lecI.1 16

variables.

• variables have:

– name

– type

– value

• naming rules:

– names may contain letters and/or numbers

– but cannot begin with a number

– names may also contain underscore () and dollar sign ($)

– underscore is used frequently; dollar sign is not too common in Java

– can be of any length

– cannot use Java keywords

– Java is case-sensitive!!

cisc3120-spring15-ozgelen-lecI.1 17

variable naming convention

• if variable name consists of a single word → all lowercase. example:

double salary;

• if variable name consists of multiple words → first letter of first word is lowercase, all the

first letters of following words uppercase. example:

int numEmployees;

• if variable is a constant → all uppercase, words are divided by an underscore () character.

example:

final int NUM_DAYS_WEEK = 7;

cisc3120-spring15-ozgelen-lecI.1 18

primitive data types.

• numeric
byte 8 bits -128 = -27 127 = 27 - 1

short 16 bits -32,768 = -215 32,767 = -215 - 1

int 32 bits -231 231 - 1

long 64 bits -262 263 - 1

float 32 bits ≈ -3.4E+38, 7 sig dig ≈ 3.4E+38, 7 sig dig

double 64 bits ≈ -1.7E+308, 15 sig dig ≈ 1.7E+308, 15 sig dig

• boolean

boolean 1 bit

• character

char 16 bits

cisc3120-spring15-ozgelen-lecI.1 19

assignment.

• = is the assignment operator

• example:

program code:

int x; // declaration

x = 19; // initialization

or

int x = 19;

computer’s memory:

x → 19

cisc3120-spring15-ozgelen-lecI.1 20

Strings.

• a String in Java is a special data type — it’s called a wrapper class (which we’ll talk

about in detail later)

• a String is essentially a group of chars

• it comes with a method called length() that lets you find out how many characters are

in the string (i.e., how long it is)

• it comes with a number of other methods, which we’ll talk about later

• a char has single quotes around it

char c = ’A’;

• a String has double quotes around it

String s = "hello world!";

• in this case, the method s.length() returns 12

cisc3120-spring15-ozgelen-lecI.1 21

mathematical operators.

+ unary plus

− unary minus

+ addition

− subtraction

∗ multiplication

/ division

% modulo

example:

int x, y;

x = -5;

y = x * 7;

y = y + 3;

x = x * -2;

y = x / 19;

what are x and y equal to?

modulo means “remainder after integer division”

cisc3120-spring15-ozgelen-lecI.1 22

coercion or type casting.

• remember from last time: data of type char is stored as a number — which is really an

index into the ASCII table (Unicode to be exact but for the latin alphabet the ASCII

values and Unicode values are the same)

• a declaration like this:

char y = ’A’;

really stores a 65 (the ASCII value of ’A’) in a memory location that is labeled y

• you can do math on that 65 by coercing (aka type casting) the char to an int

• for example:

char y = ’A’; // initialize variable y to store an A

int x = (int)y; // initialize variable x to store 65

x = x + 1; // increment x (to 66)

y = (char)x; // coerce x from an int to a char (’B’)

cisc3120-spring15-ozgelen-lecI.1 23

increment and decrement operators.

• increment: ++

i++;

is the same as:

i = i + 1;

• decrement: −−

i--;

is the same as:

i = i - 1;

cisc3120-spring15-ozgelen-lecI.1 24

assignment operators.

+=

i += 3; is the same as: i = i + 3;

-=

i -= 3; is the same as: i = i - 3;

*=

i *= 3; is the same as: i = i * 3;

/=

i /= 3; is the same as: i = i / 3;

%=

i %= 3; is the same as: i = i % 3;

cisc3120-spring15-ozgelen-lecI.1 25

boolean expressions.

• boolean variables: true (1) or false (0)

• logical operators:

! not

&& and

|| or

example:

boolean x, y;

x = true;

y = false;

System.out.println("x && y = " + (x && y));

System.out.println("x || y = " + (x || y));

System.out.println("x && !y = " + (x && !y));

cisc3120-spring15-ozgelen-lecI.1 26

truth tables.

a !a

false true

true false

a b a && b

true true true

true false false

false true false

false false false

a b a || b

true true true

true false true

false true true

false false false

cisc3120-spring15-ozgelen-lecI.1 27

relational operators.

== equality

!= inequality

> greater than

< less than

>= greater than or equal to

<= Less than or equal to

example:

int x, y;

x = -5;

y = 7;

some truths:
(x < y) true

(x == y) false

(x >= y) false

cisc3120-spring15-ozgelen-lecI.1 28

the if branching statement.

if (x < y) {

x = y;

}

if (x < y) {

x = y;

}

else {

x = 91;

}

cisc3120-spring15-ozgelen-lecI.1 29

the if branching statement (1).

there are four forms:

(1) simple if

if (x < 0) {

System.out.println("x is negative\n");

} // end if x < 0

(2) if/else

if (x < 0) {

System.out.println("x is negative\n");

} // end if x < 0

else {

System.out.println("x is not negative\n");

} // end else x >= 0

cisc3120-spring15-ozgelen-lecI.1 30

the if branching statement (2).

(3) if/else if

if (x < 0) {

System.out.println("x is negative\n");

} // end if x < 0

else if (x > 0) {

System.out.println("x is positive\n");

} // end if x > 0

else {

System.out.println("x is zero\n");

} // end else x == 0

cisc3120-spring15-ozgelen-lecI.1 31

the if branching statement (3).

(4) nested if

you can nest any kind/number of if’s

if (x < 0) {

System.out.println("x is negative\n");

} // end if x < 0

else {

if (x > 0) {

System.out.println("x is positive\n");

} // end if x > 0

else {

System.out.println("x is zero\n");

} // end else x == 0

} // end else x >= 0

cisc3120-spring15-ozgelen-lecI.1 32

System.exit() (1)

• a method in class java.lang.System

• definition:

public static void exit(int status);

• terminates the currently running Java Virtual Machine

• the argument serves as a status code — by convention, a nonzero status code indicates

abnormal termination

• use at the end of a program to exit cleanly or to terminate in the middle

cisc3120-spring15-ozgelen-lecI.1 33

System.exit() (2)

import java.lang.*;

public class ex_exit {

public static void main (String[] args) {

if (args.length < 3) {

System.out.println("usage: java ex_exit <a> <c>");

System.exit(1); // abnormal termination

}

// ... rest of program goes here ...

System.exit(0); // normal termination

} // end of main()

} // end of class ex_exit

cisc3120-spring15-ozgelen-lecI.1 34

