
cisc3120

design and implementation of software applications I

spring 2015

lecture # I.3

topics:

• introduction to java, part 2

– java classes

– writing your own classes

– static modifier

– overloading methods

– arrays of objects

cisc3120-spring15-ozgelen-lecI.3 1

java classes (1).

• classes are the block around which Java is organized

• classes are composed of

– fields (data elements)

∗ variables

∗ constants

– methods

∗ modules that perform actions on the data elements

• classes are hierarchical

• groups of related classes are organized into packages

cisc3120-spring15-ozgelen-lecI.3 2

more classes (1): objects.

• Classes are “blueprints” for creating instances of objects

• example: a house

– class = architect’s blueprint

– instance = a house built following that blueprint

• instantiate = to build the house

• you can build MANY houses using the same blueprint, so you can instantiate many objects

using the same class

cisc3120-spring15-ozgelen-lecI.3 3

more classes (2): contain members.

• data elements fields (e.g., the people and the stuff inside the house)

– constants — i.e., their values CANNOT change during the execution of a program

– variables — i.e., their values can change during the execution of a program

• methods (e.g., the things people do with the stuff)

– actions that are performed on the object and/or with its data

– a constructor is a special method used to instantiate an object of that class

– some methods may change the values of the data elements

– some methods may return the values of the data elements

• scope (e.g., where can people do things with the stuff?)

– local vs global

– instance data

– method data

cisc3120-spring15-ozgelen-lecI.3 4

more classes (3): instantiating objects.

• in order to use a class, you instantiate it by creating an object of that type

• this is kind of like declaring a variable

import java.util.*;

public class Ex3a {

public static void main(String[] args) {

Date now = new Date();

Random rnd = new Random(now.getTime());

System.out.println("here are ten positive integers:");

for(int i=0; i<10; i++) {

System.out.println(Math.abs(rnd.nextInt()));

}

}

cisc3120-spring15-ozgelen-lecI.3 5

writing your own classes (1).

• you can create your own classes in two ways:

– by writing a completely new class

– by extending an existing class

cisc3120-spring15-ozgelen-lecI.3 6

writing your own classes (2).

• Simplest form for a class definition in Java:

class <classname> {

constructor_1

constructor_2

...

method_1

method_2

...

field_1

field_2

...

}

cisc3120-spring15-ozgelen-lecI.3 7

writing your own classes (3): encapsulation and visibility.

• objects should be self-contained and self-governing

• only methods that are part of an object should be able to change that object’s data

• some data elements should not even be seen (or visible) outside the class

• public data elements can be seen (i.e., read) and modified (i.e., written) from outside the

class

• private data elements can be seen (i.e., read) and modified (i.e., written) ONLY from

inside the class

• typically, classes declare data elements as private and provide public mutator and

accessor methods if necessary.

• mutator methods commonly have set prefix in their name.

• accessor methods commonly have get prefix in their name.

cisc3120-spring15-ozgelen-lecI.3 8

writing your own classes (4): variables and constants.

• have a name, type and value

• values are initialized (0 for numbers, false for boolean and null for object variables)

• have class scope if they are declared outside of any method

• after instantiation, constant variables CANNOT change during the execution of a program

• i.e., they cannot be assigned other values, therefore remain constant

• the keyword final indicates that the variable is a constant and its value will not change

during the execution of the program

• example:

public class java.lang.Math {

static final double PI=3.1415927...;

.

.

.

} // end of Math class

cisc3120-spring15-ozgelen-lecI.3 9

writing your own classes (5): method declaration.

• like a variable, has:

– (return) data type:

∗ primitive data type, or

∗ class

∗ void if not returning any data

– name (i.e., identifier)

• also has:

– parameters (optional)

∗ formal parameters are in the blueprint, i.e., the method declaration

∗ actual parameters are in the object, i.e., the run time instance of the class

– throws clause (optional)

(we’ll defer discussion of this until later in the term)

– body

cisc3120-spring15-ozgelen-lecI.3 10

writing your own classes (6): method use.

• program control jumps inside the body of the method when the method is called (or

invoked)

• arguments are treated like local variables (call-by-value) and are initialized to the values of

the calling arguments

• method body (i.e., statements) are executed

• method returns to calling location

• if method is not of type void, then it also returns a value

– type of the returned value must be the same as the method’s return type

– calling sequence (typically) sets method’s return value to a (local) variable; or uses the

method’s return value in some way (e.g., a print statement)

cisc3120-spring15-ozgelen-lecI.3 11

writing your own classes (7): constructor.

• a constructor is a special method that is invoked when an object is instantiated

• a constructor can have arguments, like any other method

• a constructor does not return a value

• a constructor’s name is the same as the name of the class to which it belongs

• a constructor is invoked by using the new keyword

cisc3120-spring15-ozgelen-lecI.3 12

writing your own classes (8): constructor.

• example:

public class Student{

// constructor sets the student id randomly

public Student() {

id = Math.random() * 10000;

}

int id;

} // end of Student class

...

Student s1 = new Student(); // instantiates a new Student object

cisc3120-spring15-ozgelen-lecI.3 13

writing your own classes (9): example.

public class Coin {

// declare constants

public static final int HEADS = 0;

public static final int TAILS = 1;

public Coin(int value) {

this.value = value;

flip();

}

// flip the coin by randomly choosing a value for the face

public void flip() {

face = (int)(Math.random()*2);

}

cisc3120-spring15-ozgelen-lecI.3 14

// return the face value

public int getFace() {

return face;

}

// return the coin’s value

public int getValue() {

return value;

}

cisc3120-spring15-ozgelen-lecI.3 15

// return the coin’s face value as a String

public String toString() {

String faceName;

if(face == HEADS) {

faceName = "heads";

}

else {

faceName = "tails";

}

return faceName;

}

// declare variables

private int face;

private int value;

} // end of class Coin

cisc3120-spring15-ozgelen-lecI.3 16

static modifier (1).

• when we instantiate an object in order to use it, we are creating an instance variable

e.g., Random r = new Random();

• some members in some classes are static which means that they don’t have to be

instantiated to be used

• for example, all the methods in the java.lang.Math class are static

– you don’t need to create an object reference variable whose type is Math in order to

use the methods in the Math class

– e.g., Math.abs(), Math.random()

• you use the name of the class preceding the dot operator, instead of the name of the

instance variable, in order to access the static members of the class

• e.g., Math.random() vs r.nextFloat() (where r is the instance variable of type

Random that we created above)

• that is why we can use main() without instantiating anything

i.e., public static void main()

cisc3120-spring15-ozgelen-lecI.3 17

static modifier (2).

• constants, variables and methods can all be static

• except constructors

(since they are only used to instantiate, it doesn’t make sense to have a static constructor)

• typically, constants are static

• example:

public class Coin {

public static final int HEADS=0;

public static final int TAILS=1;

.

.

.

} // end of Coin class

• we can now access Coin.HEADS and Coin.TAILS without instantiating and/or without

referring to a specific instance variable

cisc3120-spring15-ozgelen-lecI.3 18

static modifier (3).

public class Student {

public Student(){

id = nextId;

nextId++;

}

...

private final int id;

private static int nextId = 1;

} // end of Student class

cisc3120-spring15-ozgelen-lecI.3 19

overloading methods (1).

• in addition to changing precisely what a method does, you can also change the parameters

to that method

• this is very useful if you are changing the data type of data objects defined in the class

• you can create a new version of a method which has different parameters from the version

of the method defined in the class’s superclass

• this is what happens when we use different versions of the println() method:

int i = 5;

String s = "hello";

System.out.println(i);

System.out.println(s);

cisc3120-spring15-ozgelen-lecI.3 20

overloading methods (2).

• in other words, you are using the same method name with formal parameters of different

types

• example:

– java.lang.System has-a variable called out,

which is-a java.io.PrintStream

– whose declarations include:

public void println();

public void println(boolean x);

public void println(char x);

public void println(double x);

public void println(float x);

public void println(int x);

public void println(Object x);

public void println(String x);

• these are all different ways of printing data, but the difference is the type of object being

printed

cisc3120-spring15-ozgelen-lecI.3 21

overloading constructor.

public class Coin {

// default constructor

public Coin() {

value = 25;

flip();

}

// overloaded constructor

public Coin(int v) {

value = v;

flip();

}

}

cisc3120-spring15-ozgelen-lecI.3 22

arrays of objects (1).

• we can have arrays of anything — i.e., other data types — like classes

• for example, we can have an array of Coin, objects

• the Coin[] variable contains a list of addresses

• as with int or char arrays, first you must declare and instantiate the array:

Coin[] pocket = new Coin[10];

• but because the array elements are not primitive data types, you must also instantiate each

array entry:

for(int i = 0; i < pocket.length; i++) {

pocket[i] = new Coin();

}

cisc3120-spring15-ozgelen-lecI.3 23

arrays of objects (2).

public class ObjectArrayDemo {

public static void main(String[] args) {

final int NUMCOINS = 10;

Coin[] pocket = new Coin[NUMCOINS];

int headcount = 0, tailcount = 0;

// instantiate each of the coins in the array

for(int i = 0; i < pocket.length; i++)

pocket[i] = new Coin();

// print the array

for(int i = 0; i < pocket.length; i++)

System.out.println("i["+i+"]="+pocket[i]);

}

}

cisc3120-spring15-ozgelen-lecI.3 24

arrays of objects (3).

public class Coin {

public final int HEADS = 0;

public final int TAILS = 1;

public Coin() { flip(); }

public void flip() { face = (int)(Math.random() * 2); }

public int getFace() { return face; }

public String toString() {

String faceName;

if (face == HEADS) {

faceName = "heads";

}

else {

faceName = "tails";

}

return faceName;

}

private int face;

} // end of class Coin

cisc3120-spring15-ozgelen-lecI.3 25

arrays of objects (4).

• sample output:

i[0]=tails

i[1]=tails

i[2]=heads

i[3]=tails

i[4]=tails

i[5]=heads

i[6]=tails

i[7]=heads

i[8]=heads

i[9]=heads

• but why do you have to instantiate twice?

• because when you instantiate the first time:

Coin[] pocket = new Coin[10];

you are only allocating memory for references for each Coin array element

cisc3120-spring15-ozgelen-lecI.3 26

