
cisc3120

design and implementation of software applications I

spring 2015

lecture # I.4

topics:

• introduction to java, part 4

– ’this’

– references

– exception handling

– comparing objects

– vectors

– utility classes

cisc3120-spring15-ozgelen-lecI.4 1

’this’ keyword (1).

• this is a reference to the current object from within an instance method or a constructor

by using this.

• The most common reason for using the this keyword is because a field is shadowed by a

method or constructor parameter.

public class Coin {

public Coin() { value = 0; }

public Coin(int value) { this.value = value; }

public void setValue(int value) {

this.value = value;

this.value += 10;

}

private int value;

cisc3120-spring15-ozgelen-lecI.4 2

public static void main(String[] args) {

Coin quarter = new Coin();

quarter.setValue(15);

}

}

• In the above example, this refers to the quarter object and local variable value in setValue

holds 15.

cisc3120-spring15-ozgelen-lecI.4 3

’this’ with constructor (2).

• this keyword can be used to call another constructor in the same class.

• It is called an explicit constructor invocation

public class Coin {

// default constructor

public Coin() {

this(25);

}

// overload constructor

public Coin(int v) {

value = v;

flip();

}

}

cisc3120-spring15-ozgelen-lecI.4 4

references (1).

• when we declare a variable whose data type is a class, we are declaring an object reference

variable

• that variable refers to the actual object stored in computer’s memory

• an object reference variable and an object are two separate things

• declaration of an object reference variable:

Coin x;

• creation of an object (also called “construction”, “instantiation”):

x = new Coin();

cisc3120-spring15-ozgelen-lecI.4 5

references (2).

• when you declare a variable as a primitive data type, the computer sets aside a fixed

amount of memory, based on the size of the data type

• when you declare a variable of any other data type (i.e., a class), you are actually declaring

a reference

• a reference is typically the size of an int or a long

• it stores information for the object, which the JVM uses to locate the address in the

computer’s memory, where the actual data will be kept

• you can think of it like a telephone book

– the phone book has a bunch of addresses in it

– but not the actual buildings

– just the locations of buildings

cisc3120-spring15-ozgelen-lecI.4 6

references (3).

• here’s how it works inside the computer

• given the following declarations:

int i = 45;

String s = "hello";

• the memory looks something like this:
i s

45 • → hello

• i is the label for the location in memory where the actual data is stored — in this case the

int 45

• s is the label for the location in memory where the address is stored; the address is the

location in memory where the actual data for s is stored

• in C, this is called a pointer

• we say that s points to or references the location in memory where the actual data for s is

stored

cisc3120-spring15-ozgelen-lecI.4 7

references (4).

• let’s go back to the Coin example

• comment out the toString() method and re-run the example

• here’s the output now:

i[0]=Coin@73d6a5

i[1]=Coin@111f71

i[2]=Coin@273d3c

i[3]=Coin@256a7c

i[4]=Coin@720eeb

i[5]=Coin@3179c3

i[6]=Coin@310d42

i[7]=Coin@5d87b2

i[8]=Coin@77d134

i[9]=Coin@47e553

• these are the references of the array elements

• we can see these reference values because we took out the toString() method — calling

System.out.println(pocket[i]) automatically coerces its argument (pocket[i]) to

a String so it can print it; if there is no explicit toString() method in the class, then a

reference is the closest String representation

cisc3120-spring15-ozgelen-lecI.4 8

references (5).

• when an object reference variable has been declared but the object does not refer to an

object, then the object reference variable is called a null reference

• for example:

Coin[] x = new Coin[5];

x[0].flip();

• will generate an error called a NullPointerException because the object which x[0]

refers to has not been instantiated

• you can use a constant called null to check if an object reference variable is null

• for example:

Coin[] x = new Coin[5];

if(x[0] != null) {

x[0].flip();

}

cisc3120-spring15-ozgelen-lecI.4 9

references (6).

• an alias is an object reference variable that refers to an object that was previously

constructed and is already referred to by another object reference variable

• for example:

Coin x = new Coin();

Coin y;

y = x;

y.flip();

• y is called an “alias” of x (and vice versa) because they both refer to the same object in

the computer’s memory

cisc3120-spring15-ozgelen-lecI.4 10

references (7).

• garbage collection is necessary when all references to an object are gone

• because when there are no object reference variables, then there is no way to know where

in memory an object is located

• Java handles this for you automatically

• the JVM periodically invokes automatic garbage collection while it is running

• all the memory that is allocated to an application but is not being used is “restored” so

that it can be re-allocated to the application later

• if you want to perform some garbage collection on a class that you create yourself, then

you would write a method called finalize() and whenever the automatic garbage

collection was invoked and cleaned up an object of your class type, then your finalize()

method would be called

cisc3120-spring15-ozgelen-lecI.4 11

references (8).

• in Java all method calls are call-by-value.

• so be careful about what changes!

• here’s an example using two classes:

– Num

– ParameterTester

cisc3120-spring15-ozgelen-lecI.4 12

references (9).

public class Num {

private int value;

public Num(int update) {

value = update;

}

public void setValue(int update) {

value = update;

}

public String toString() {

return value+"";

}

}

cisc3120-spring15-ozgelen-lecI.4 13

references (10).

public class ParameterTester {

public static void main(String[] args) {

int a1 = 111;

Num a2 = new Num(222);

Num a3 = new Num(333);

System.out.println("before call: \ta1=" + a1 + ", \ta2=" + a2 + ", \ta3=" + a3);

changeValues(a1, a2, a3);

System.out.println("after call: \ta1=" + a1 + ", \ta2=" + a2 + ", \ta3=" + a3);

}

public static void changeValues(int f1, Num n1, Num n2) {

System.out.println("start call: \tf1=" + f1 + ", \tn1=" + n1 + ", \tn2=" + n2);

f1 = 999;

n1.setValue(888);

n2 = new Num(777);

System.out.println("end call: \tf1=" + f1 + ", \tn1=" + n1 + ", \tn2=" + n2);

}

}

cisc3120-spring15-ozgelen-lecI.4 14

references (11).

• sample output:

before call: a1=111 a2=222 a3=333

start call: f1=111 f2=222 f3=333

end call: f1=999 f2=888 f3=777

after call: a1=111 a2=888 a3=333

cisc3120-spring15-ozgelen-lecI.4 15

references (12).

• when an object reference variable is declared final, its reference cannot be changed.

• however, the object itself can be modified:

// binds the reference quarter to the object

final Coin quarter = new Coin(25);

// error! cannot assign a value to final var

quarter = new Coin(5);

// OK!

quarter.setValue(5);

// prints out the value of the coin as 5

System.out.println(quarter);

• final in Java is not the same as const in C/C++

cisc3120-spring15-ozgelen-lecI.4 16

exception handling (1).

• exceptions are ’exceptional’ situations which would cause a serious error in your program

such as bad input data, file not found etc.

• try clause contains code which may generate an exception.

• catch clause contains code to execute in case the error happens; i.e., where to go if the

exception gets caught:

try {

// (1) statement that may cause an exception

// (2) other statements

}

catch(Exception e) {

// (3) do something with the exception

}

• if the statement at (1) above throws an exception the code will jump to catch statement

and ’handle’ the exception as stated in (3)

• if no exception is generated at (1), statments at (2) will be executed

cisc3120-spring15-ozgelen-lecI.4 17

exception handling (2).

• an exception is ’thrown’ by creating an exception object and placing keyword throw before

the object:

throw new NumberFormatException();

• all exceptions in Java derives from Exception class and generally divided into two

categories:

– RuntimeException which happens due to programming errors (e.g.

ArrayIndexOutOfBoundsException, NullPointerException)

– IOException which refers to situations referring to bad input to an otherwise good

program.

• In general, you should handle IOExceptions and fix the bugs that causes

RuntimeException

cisc3120-spring15-ozgelen-lecI.4 18

exception handling (3).

• if a method throws an exceptions its signature contains the throws keyword followed by

the type of exception thrown. Integer.parseInt method signature in API docs:

public static int parseInt(String s)

throws NumberFormatException

• try-catch basic form example:

try {

int i = Integer.parseInt("a");

}

catch(NumberFormatException e) {

System.out.println("there was an error: " + e.getMessage());

}

cisc3120-spring15-ozgelen-lecI.4 19

exception handling (4).

• you can have multiple catch blocks for different exception types:

Coin c = null;

try {

int i = Integer.parseInt("a");

c.flip();

}

catch(NumberFormatException nfe) {

System.out.println("there was an error: " + nfe.getMessage());

nfe.printStackTrace();

}

catch(NullPointerException npe) {

System.out.println("You should probably initialize the Coin" +

" object rather than catching this exception!");

}

finally {

System.out.println("Done!");

}

cisc3120-spring15-ozgelen-lecI.4 20

comparing objects (1).

• comparing two Java objects is tricky

• you have to be careful of what you are comparing:

– is it the value of some member(s) of the class?

– or is it the reference? (like a pointer in C/C++)

• using == compares the references (if they refer to the same object)

• which is not the same as comparing the values of member(s) of the class

• many classes have a method called compareTo() to compare the value of member(s) of

the class

cisc3120-spring15-ozgelen-lecI.4 21

comparing objects (2).

• here’s an example from the Coin class:

– comparing the value of the face member of two coins:

Coin coin0 = new Coin(10);

Coin coin1 = new Coin(10);

if(coin0.getValue() == coin1.getValue()) {

System.out.println("coins 0 and 1 have the same value");

}

– versus comparing the references:

if(coin0 == coin1) {

System.out.println("coins 0 and 1 are the same");

}

cisc3120-spring15-ozgelen-lecI.4 22

comparing objects (3).

• in order to compare the value of two Strings, we need to use the method

public int compareTo(String str)

from the java.lang.String class

• this method does a lexical comparison of its String argument with the current object

(i.e., its instantiated value)

• it returns an int as follows:
if the current object... then the method returns

is the same text as str 0

comes lexically before str an int < 0 (e.g., -1)

comes lexically after str an int > 0 (e.g., +1)

• using == to compare two Strings compares the references, NOT the values of the text

they store

• this is the same for comparing any two objects in Java

• most classes define a compareTo() method, just as most classes define a toString()

method

cisc3120-spring15-ozgelen-lecI.4 23

comparing objects (4).

• for example:

public class CompareString {

public static void main(String[] args) {

String s1 = new String("hello");

String s2 = new String("hello");

System.out.println("s1=[" + s1 + "]");

System.out.println("s2=[" + s2 + "]");

System.out.println("(s1 == s2) = " + (s1 == s2));

System.out.println("s1.compareTo(s2)=" + s1.compareTo(s2));

System.out.println("s2.compareTo(s1)=" + s2.compareTo(s1));

}

}

• sample output:

s1=[hello]

s2=[hello]

(s1 == s2) = false

s1.compareTo(s2)=0

s2.compareTo(s1)=0

cisc3120-spring15-ozgelen-lecI.4 24

comparing objects (5).

• so we could add to our Coin class:

public int compareTo(Coin coin) {

if(value == coin.getValue()) {

return 0;

}

else if(value < coin.getValue()) {

return -1;

}

else {

return 1;

}

}

cisc3120-spring15-ozgelen-lecI.4 25

vectors (1).

• Java has a nice class which handles arrays dynamically: java.util.Vector

• the elements of a Vector can be any type of Java Object

• note that when you fetch an element from a vector, you have to cast it from a generic

object to the specific class type the object should be (see example below)

• some methods:

– constructor: Vector();

– public void addElement(Object obj);

– public void insertElementAt(Object obj, int index);

– public void removeElementAt(int index);

– public void removeAllElements();

– public void setElementAt(Object obj, int index);

– public Object elementAt(int index);

– public int size();

cisc3120-spring15-ozgelen-lecI.4 26

vectors – example.

import java.util.*;

import java.io.*;

public class Ex4c {

public static void main(String[] args) {

Vector pocket;

int npocket = Integer.parseInt(args[0]);

pocket = new Vector(npocket);

for(int i = 0; i < npocket; i++) {

pocket.addElement(new Coin());

}

for(int i = 0; i < npocket; i++) {

Coin tmp = (Coin)pocket.elementAt(i);

System.out.print(tmp + " ");

}

System.out.println();

}

}

cisc3120-spring15-ozgelen-lecI.4 27

vectors – things to notice.

• notice that we instantiate twice...

• notice that we instantiate in the call to pocket.addElement():

pocket.addElement(new Coin());

• notice that we cast the return from pocket.elementAt():

Coin tmp = (Coin)pocket.elementAt(i);

cisc3120-spring15-ozgelen-lecI.4 28

utility classes: java.util.StringTokenizer.

• used to break up a string into “tokens”, i.e. components

• each token is separated by a “delimiter”

• default delimiter is whitespace

• but you can set another value for delimiter

• primary method used: public String nextToken();

• example:

line = infile.readLine();

tokenizer = new StringTokenizer(line);

name = tokenizer.nextToken();

try {

units = Integer.parseInt(tokenizer.nextToken());

price = Float.parseFloat(tokenizer.nextToken());

}

catch(NumberFormatException nfx) {

System.out.println("error in input; line ignored: " + line);

}

cisc3120-spring15-ozgelen-lecI.4 29

utility classes: java.text.DecimalFormat.

• used to format decimal numbers

• construct an object that handles a format

• use that format to output decimal numbers

• formatting patterns include:

– 0 used to indicate that a digit should be printed, or 0 if there is no digit in the number

(i.e., leading and trailing zeros)

– # used to indicate that if there is a digit in the number, then it should be printed;

indicates rounding if used to the right of the decimal point

• example:

DecimalFormat fmt = new DecimalFormat("#.00");

double price;

System.out.println("price = $" + fmt.format(price));

cisc3120-spring15-ozgelen-lecI.4 30

