cisc3120
design and implementation of software applications |
spring 2015
lecture # 1.6
topics:
e introduction to java, part 6

— abstract classes

— interfaces

— member accessibility

— UML basics

— review of OOP concepts

cisc3120-spring15-ozgelen-lecl.6

abstract classes

e abstract classes allows to exploit the common features of classes
® it represents a generic concept in a class hierarchy
e cannot be instantiated — can only be inherited

o declared with the keyword abstract before class

public abstract class Vehicle {

}

® an abstract method is a method declared without implementation (without braces, and
followed by a semicolon)

public abstract void move(double x, double y);

® an abstract class may or may not have abstract methods

e however a class with an abstract method have to be declared abstract.

cisc3120-springl5-ozgelen-lecl.6

abstract classes (2).

e when an abstract class is inherited, the subclass has to provide implementations for all of
the abstract methods in its parent class.

o otherwise the derived class must also be declared abstract

public abstract class Vehicle {
public abstract void move(double x, double y);
public double getSpeed() { return speed; }
private double speed ;

}

public class Car extends Vehicle {
public void move(double x, double y) {
// has to implement this method
}
}
® abstract classes may define methods and declare data fields

o subclasses extending abstract classes inherit the defined methods

cisc3120-spring15-ozgelen-lecl.6

interfaces.

e an interface is not a class but a set of requirements for classes that want to conform to
the interface

e methods cannot be implemented in the interface
e interfaces cannot have instance fields
® all methods in the interface are automatically public
e interfaces are used for:
— design
— interoperability

® do not confuse this use of the word interface with the same word in the graphical user
interface (GUI)

cisc3120-spring15-ozgelen-lecl .6

interfaces (2).

e interfaces are declared using a similar syntax as classes

o to declare an interface you have to use keyword interface instead of class

public interface Movable {
boolean move(double x, double y);

}
o like classes they can be extended

public interface Flyable extends Movable {
void changeAltitude(int rate);
}

o like in abstract classes, you cannot instantiate an interface using new
e however you can declare interface variables

e interface variable must refer to an object that implements the interface

cisc3120-spring15-ozgelen-lecl.6

interfaces (3).

® any class that implements java.lang.Comparable interface is required to implement
the compareTo method which takes an Object parameter and return and integer

public interface Comparable {
int compareTo(Object other);

}

e in order to use an interface the classes must use the keyword implements in the class
declaration

public class Car extends Vehicle implements Comparable {
public int compareTo(Object other){
Car ¢ = (Car) other;
if (this.vehicleIdentNum == c.getIdentNum()) { return O; }
else if(this.vehicleIdentNum < c.getIdentNum()) { return -1; }
else { return 1; }

cisc3120-spring15-ozgelen-lecl .6

interfaces(4).

e why bother with interfaces when we can declare classes abstract?

public abstract class Comparable { // WHY NOT?
public abstract int compareTo(Object other);
}

o Java doesn't allow multiple interitance, a class can only have a single parent
public class Car extends Vehicle, Comparable // ERROR
® classes may implement from multiple interfaces

public class Car extends Vehicle implements Comparable, Movable

// OK

e interfaces provide most of the benefits of multiple inheritance while avoiding its
complexities and inefficiencies

cisc3120-spring15-ozgelen-lecl.6

interfaces - design.

o interfaces are very useful for emphasizing functionality of classes during the initial design
stages of large programs.

public interface Drivable {
int getSpeed();
void setSpeed(double speed);
void steer();
boolean move();

}

e interface describes a class, but does not say how the methods and the data fields are
implemented

e it describes only the services provided by the class
e it represents the outward appearance of a class seen by the users of the class

e interfaces can also be used to describe an inheritance structure

cisc3120-spring15-ozgelen-lecl .6

interfaces - interoperability.

e example : a power cord with a plug

— the design of the plug is standard
— the design ensures that an appliance can be used anywhere

— the adoption of a common design (interface) ensures interoperability

o Java interfaces can be used in similar fashion to ensure that objects exhibit common
behavior

e example: java.util.Arrays class provides methods to perform operations on the data
such as searching, sorting, etc.

public static void sort(Object([] a)

e in order to use the sort method on the object arrays, the class of the object has to
implement Comparable interface.

cisc3120-spring15-ozgelen-lecl.6 9

member accessibility.

e private: only accessible within the class they are declared

o package: (default) accessible from classes that are in the same package. If you don't
declare a package name for your classes, they automatically belong to default package.

e protected: accessible from classes that are in the same package and from subclasses even
if they belong to another package

® public: accessible by all

cisc3120-spring15-ozgelen-lecl .6 10

Unified Modeling Language (UML)

e UML is a graphical language for visualizing the architectural, behavioral and structural
aspects of complex software systems.

e object-oriented systems are generally modeled using UML

o especially useful during the design phase to structure classes, interfaces, their relationships
and division of responsibilities among them

e diagrams are the main tools in UML, divided in two groups:

— structural: class diagram, object diagram etc.

— behavioral: sequence diagram, collaboration diagram etc.

® a number of tools exist (Umbrella, Dia, Umlet etc.) for UML and some IDE's such as
Eclipse have plugins that can build parts of the source code based on some UML diagrams.

cisc3120-spring15-ozgelen-lecl.6 11

Unified Modeling Language (Class Diagram)

Point2D PatrolCar
-x:1int="10 1 [-id:int
-ytint= [[)] |- Inextld tint
+ Point2D oo |- location @ Point2D
+ Point2D(x : int, y : int) location - numArrested : int = 0
+ setX(x : int) + FatrolCar(]
+ getX() : int + moveEast() : bool
+ sef¥ly : int) + moveWest() : bool
+ getY() : int + moveNorth() : bool
~ compareTe(other : Point2D) : int + moveSouth() : bool
~ toString() : string + getld() : int
-suspects(] + getlocation() : Point2D
+ getNumArrested() : int
+ addArrested()
{ NUM_SUSPECTS 1 ~ toString() : string
World . ~ compareTolother : PatrolCar) : int
- suspects[] : Point2D wear
- car : PatrolCar
- NUM_SUSPECTS : int =3
+ World()
+ move()
+ update())
Lab 3 class diagram
cisc3120-spring15-ozgelen-lecl.6 12

Unified Modeling Language (Class Diagram 2)

+ getNumsSuspectArrested() : int
~ toString() : string
~ compareTo(other : PatrolCar) : int

cisc3120-spring15-ozgelen-lecl.6

Point2D Person Suspect
-xiint=0 1 [-Tocation : PointzD -1 int
-y:int=0 + Personl) - nextld : int
+ Point2D() - + Person(x : int, y : int) - money : int
+ Point2D(x : int, y : int) location - moveEast() : bo{a\ - arrested : bool
+ setX{x : int) - moveWest() : bool + Suspect(]
+ getx() : int - moveNorth() : bool + getld() : int
+ setY(y : int) - moveSouth() : boal + isArrested() : bool
+ getY() : int + move(direction : int) : bool + caught()
~ compareTo(other : Point2D) : int + getlocation() : Point2D + rob()
~ tostring() : string + setlLocation{location : Point2D} ~ toString() : string
~ toString() : string
PatrolCar ~ compareTo(other : Person) : int -suspects(]
-id tint
- nextld : int Civilian
-range : int World o - money : int
~arrested[] : int _patrols(] | [+ World() [civilians[1[+ Civilian(]
+ PatrolCar(] + move() + getMoney() : int
+ getld(} : int) + update() + giveMoney()
+ addArrested(suspectld : int) ~ tostring() : string

Lab 4 class diagram

Unified Modeling Language (Use Case Diagram)

™
.
.

.

N arrest

“x<extends>> %
\\
.
.
% <<include>> Suspect

Patrol

<<extends>>

Person

search

<<include>>

<<extends>> %
""""""""" S rob
Civilian /

cisc3120-spring15-ozgelen-lecl .6

Unified Modeling Language (Sequence Diagram)

: move(direction)

‘
‘

cisc3120-spring15-ozgelen-lecl.6

- setx(int)

- sety(int)

review of OOP Concepts.

o Encapsulation: a language construct that facilitates the bundling of the data with the
methods opertating on that data (e.g. decalaring data private and controlling the access
to data with public methods)

e Inheritance: a way to reuse code of existing objects

public class A {

public String getName() { return "A"; }
}
public class B extends A {

pubic String getName() { return "B"; }
}

e Polymorphism: is the ability to create an object that has more than one form

A[] arrayA = new A[2];
arrayA[0] = new AQ);

arrayA[1] = new B(); // both an instance of A and B

cisc3120-spring15-ozgelen-lecl .6

e Dynamic binding: determining the 'true’ type, therefore the behavior of an object at
run-time.

for(A instanceA : arrayA)
System.out.println(instanceA.getName());

cisc3120-spring15-ozgelen-lecl.6

