
cis3120

design and implementation of software applications I

spring 2015

lecture # II.2: Java GUI API

topics:

• Java GUI API

– Layout Managers

– Event Handlers

• Reference: A Programmers Guide to Java Certification by Mughal and Rasmussen

cis3120-spring2015-ozgelen-lecII.1 1

Layout Managers. (1)

• Java AWT provides five layout managers:

cis3120-spring2015-ozgelen-lecII.1 2

Layout Managers. (2)

• a layout manager describes where the components are laid out within a given container

• each container is associated with a “default” layout manager

• for Frame and default is BorderLayout

• for Panel and Applet default is FlowLayout

• you can “set” and “get” the layout manager for each container using :

– void setLayout(LayoutManger mgr)

– LayoutManger getLayout()

• you can “nest” containers (and their layour managers)

• even if components use setSize(), layout managers may not honor it, they will be

treated more like “preferred” size of the components

cis3120-spring2015-ozgelen-lecII.1 3

FlowLayout.

• FlowLayout places the components in row-major order, growing from left to right and

rows top to bottom.

• honors preferred size of the components

• C’tors:

– FlowLayout()

– FlowLayout(int alignment)

– FlowLayout(int alignment, int horizontalGap, int verticalGap)

• static data fields to set alignment:

– public static final int LEFT

– public static final int CENTER

– public static final int RIGHT

cis3120-spring2015-ozgelen-lecII.1 4

BorderLayout.

• BorderLayout places components in the four compass directions in addition to its center:
north

west center east

south

• only one component can be placed in each region. if you add more than one, only the last

one is shown

• not all regions need to be occupied

• C’tors

– BorderLayout()

– BorderLayout(int horizontalGap, int verticalGap)

• components can be explicitly added to one of the regions by using the contraints

argument (NORTH, SOUTH, EAST, WEST) in add method of the container.

• e.g. add(okButton, BorderLayout.NORTH)

• will attempt to honor the preferred height of components in NORTH and SOUTH regions

and preferred width in WEST and EAST regions

cis3120-spring2015-ozgelen-lecII.1 5

CardLayout.

• CardLayout handles containers like a stack of indexed cards

• only the top component is visible and fills the whole region

• C’tors

– CardLayout()

– CardLayout(int horizontalGap, int verticalGap)

• components can be accessed using:

– void first(Container parent)

– void next(Container parent)

– void previous(Container parent)

– void last(Container parent)

• void show(Container parent, String name) shows the component with “name”

cis3120-spring2015-ozgelen-lecII.1 6

GridLayout.

• GridLayout divides the region of a container into a rectangular grid

• only one component can be placed in each cell

• all the cells in the grid have the same height and width

• ignores the component’s preferred size, components are resized to fill the cell

• cell size depends on the container’s size and the number of cells

• C’tors

– GridLayout()

– GridLayout(int rows, int columns)

– GridLayout(int rows, int columns,

int horizontalGap, int verticalGap)

cis3120-spring2015-ozgelen-lecII.1 7

GridBagLayout.

• GridBagLayout places components in the container in “rows” and “columns”

• you can specify the number of rows and columns

• you can specify the spacing between each row and/or column

• you can specify how a component is placed within its row/column, if it is smaller than the

space allocated

• note that the height of an entire row is uniform, even if the components in each column

are of different heights

• and the same for the width of a column

• all these are specified using a GridBagConstraints object

• component is then added using the GridBagConstraints object (gbc):

add(button, gbc)

cis3120-spring2015-ozgelen-lecII.1 8

GridBagLayout. (2)

GridBagConstraints(int gridx, int gridy, int int,

gridwidth gridheight, double weightx, double weighty,

int anchor, int fill, Insets insets, int ipadx, int ipady);

• gridx, gridy specify the location of the component, can be set to RELATIVE

• gridwidth, gridheight specify how many columns/rows the component occupies. can

be set to RELATIVE or REMAINDER

• weightx, weighty specify how to distribute extra horizontal and vertical space

• anchor specifies where to place a component when it is smaller than its display area (e.g.,

CENTER, NORTH, NORTHEAST, ...)

• fill specifies whether to resize a component if it is smaller than its display area (e.g.,

NONE, HORIZONTAL, VERTICAL, BOTH)

• insets specifies minimum amount of space between a component and the edges of its

display area (external padding)

• ipadx, ipady specifies how much space to add to the minimum width and height of the

component (internal padding)

cis3120-spring2015-ozgelen-lecII.1 9

Event Handling

• an event represents some action on the part of the user

• user-generated events are entered either through the mouse or the keyboard

• GUI applications are event-driven (mouse clicks, key strokes, moving scrollbar, closing

window, etc.)

• principal elements of event handling in Java:

– event classes encapsulate information about different types of user interaction

– event source objects inform event listeners about events and necessary information

about these events

– event listener objects that are informed by event source objects take appropriate action

• in order to handle events you have to:

– (1) set event listeners to event sources

– (2) define appropriate actions in event listeners

cis3120-spring2015-ozgelen-lecII.1 10

Events (1).

cis3120-spring2015-ozgelen-lecII.1 11

Events (2).

• event classes derive from abstract java.awt.AWTEvent class package: java.awt.event

• AWTEvent subclasses can be divided into two groups:

– Semantic events : high-level (e.g. clicking a button)

∗ ActionEvent sources : Button, List (double-click), TextField

∗ AdjustmentEvent sources : Scrollbar

∗ ItemEvent sources : Checkbox, Choice, List (select/deselect)

∗ TextEvent sources : TextField (ENTER key)

– Low-level events : low-level input(e.g. moving mouse) or window operations

∗ KeyEvent : key press, release or both

∗ MouseEvent : pressed, release, clicked, dragged, moved, etc.

∗ WindowEvent : opened, closed, etc.

∗ ComponentEvent : hidden, shown, moved or resized

∗ ContainerEvent : handled internally by AWT

∗ PaintEvent : handled internally by AWT

∗ FocusEvent : when a component gains or loses focus (can receive keystrokes)

cis3120-spring2015-ozgelen-lecII.1 12

Event Listeners (1).

• listeners are interfaces

• for each event type there is a listener interface XEvent – XListener

• to register and remove listeners to components use:

addXListener() removeXListener()

• then you need to implement each method in the interface

• e.g., for a KeyListener, you need:

– keyPressed()

– keyTyped()

– keyReleased()

• the body of a method can be empty, if you don’t want to do anything when a given event

occurs

• to get the source of the event call getSource() method

cis3120-spring2015-ozgelen-lecII.1 13

Event Listeners as Anonymous Inner Classes.

• Anonymous classes allow creating listeners and adding them to event sources:

public someMethod() {

...

Button quitButton = new Button("Quit");

quitButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

System.exit(0);

}

});

...

}

• the anonymous class implements ActionListener interface and its method

actionPerformed

• commonly used in GUI applications if a single listener object will be instantiated

cis3120-spring2015-ozgelen-lecII.1 14

Events Adapters.

• some event listener interfaces have multiple methods (e.g. WindowListener has 7 methods)

• if you only need to specify one or a few of these methods, you still have to define others

even if that means leaving their body empty

• java.awt package contains adapters for these interfaces, which implement a listener

interface and contain ’blank’ definitions for all of its methods (e.g. WindowAdapter)

• you can extend an adapter instead of implementing its interface and override the method

that you need to specify

cis3120-spring2015-ozgelen-lecII.1 15

