cis3210
design and implementation of software applications |
spring 2015
lecture # 11.5: graphics systems

topics:
o affine transformations
references:

e Oracle Java SE 2D Tutorial

cis3120-spring2015-ozgelen-lecll.5 1

affine transformations

e affine transformations are generalizations of geometric transformations that allows for
manipulation of a graphic object easily by using mathematics to transform the coordinates
of the points of the object

o three basic transformations will be discussed:

— translating is shifting an object to a new location, without changing its size or shape

— scaling is changing the size of an object

— rotation is turning an object about a particular point, without changing the object’s
size or shape

o although we'll cover 2-dimensional transformations only, the same concepts apply for 3 (or
more) dimensions

o for each type of transformation, there are a set of matrix equations that can be applied to
ease the computation

cis3120-spring2015-ozgelen-lecll.5 2

basics

® every point in 2-dimensional space is represented as a vector
y | or in 3-dimensional space | y
.

1

® a matrix is just like a vector with more than one column, e.g.:
153
814
291

e in order to be able to multiply two matrices together, the number of rows in one has to be
the same as the number of columns in the other

o the general formula for matrix multiplication is:
m

Clrow,col) = ; Arow,s) * Bs col)

where A is an n X m matrix and B is an m X p matrix and C'is an n X p matrix

cis3120-spring2015-ozgelen-lecll 5 3

e so if we want to multiply two 2-dimensional matrices together:
11012 by
21022 by
e applying the formula, and then substituting back the original matrix values, we get:

Cuay = T A * By = Aay * Baay + A * B
Can = T A * By = Ay * Baay + A * Bea

in other words:
| ann * b4 ag * by
Qg1 * by + ag x by

cis3120-spring2015-ozgelen-lecll.5 4

translation

e translating is shifting an object to a new location, without changing its size or shape
e to translate (shift, move) the object in each direction use Az and Ay values, respectively
e to translate point (z,y) by Az units along the x axis and Ay units along the y axis

e because transformations are often done in conjunction with other transformations (which
require matrix multiplication) translation is expressed in the following matrix form (2D):

scaling

e scaling is changing the size of an object
e this can be done uniformly, where the size of all dimensions change by the same amount

e or non-uniformly, where the size of each dimension changes by a different amount, s, and
5y, which represent how much we want to scale the object in the 2 and y dimensions,
respectively. Scaling is represented in matrix form:

s, 00
S=10 s,0
0 01
e when applied:
' s, 0 0|2 T* S, +yx0+1%0 T * S,
Y0 =10 s, 0||y|=|2zx0+yxs,+1%0|=|yx*s,
1 0 0 1]|1 cx04+y*x04+1x1 1

o this operation shifts the object if the object is not first moved to the origin. (e.g. imagine
a line from point (1,2) to (2,4) scaled to s, = s, = 2. the result will be a line (2,4) to

(4,8))

cis3120-spring2015-ozgelen-lecll.5 6

10 Az
T=101 Ay
00 1
® when applied:
' 10 Az ||z zxl+y*x0+1*xAzx T+ Ax
Y{=101Ay||y|=|zx04+yx1+1xAy|=|y+Ay
1 00 1 1 cx04+yx0+1x1 1
Cis3120-spring2015-ozgelen-lecll.5 5
rotation

e rotation is turning an object about a particular point, without changing the object's size or
shape

e typically, rotation is computed about the origin

o (Xy)

H e (¥
a

e the amount of rotation is expressed in terms of an angle, 6

cis3120-spring2015-ozgelen-lecll 5 7

o the maxtrix form for rotating a point by 6 about the origin:

cos(6) sin(0) 0
)

R=| —sin(f) cos(f) (
0 0 1
e when applied:
i cos() sin(0) 0| x % cos(0) +y x sin(0) +1%0
y | = | —sin(0) cos(@) 0||y|=]|—xx*sin(0)+yx*cos(d)+1x%0
1 0 0 1 1 cx0+y*x0+1x1

x * cos(0) + y * sin(0)
= | y*cos(f) — x * sin(0)
1

e in order to rotate an object about its center point, you first have to translate the object so
that the center point is at the origin, perform the rotation and then translate the object
back to where it came from

cis3120-spring2015-ozgelen-lecll.5 8

combining transformations

o complex graphics objects are composed of lots of points, therefore a common method to
transform these objects is:

— first multiply all the transformation matrices and

— then use the result matrix to transform each point

e matrix multiplication is not commutative, in other words:
TS # ST

o therefore the order matters. example:

1+0+Az ||s, 00 5p 8y 0T
TS=|0+1+Ay || 0 s, 0|=]0 s, dy
04+0+1 0 01 0 0 1
sy 0 0]|140+4+Ax s, 0 s, %0x
ST=10 5, 0[|0+14+Ay|=|0 s, 5,%0y
00 1]|]0+0+1 0 0 1

Cis3120-spring2015-ozgelen-lecll.5

Java Graphics2D transformations

e Graphics2D class contains a transform attribute, which is an instance of
AffineTransform class in java.awt.geom package.

e by modifying transform attribute you can translate, scale and rotate graphics primitives
when they are rendered.

e usual steps for performing transformations with Graphics2D
— save the current state of the transform attribute:
AffineTransform savedTransform = g2.getTransform();

— change the transform by concatenating translate, scale, rotate operations,
example:

g2.translate(10,40);
g2.rotate(Math.toRadians(50));
g2.scale(1.3, 0.7);

— restore the transform to its initial state:

g2.setTransform(savedTransform) ;

cis3120-spring2015-ozgelen-lecll.5 10

Java Graphics2D transformation example

import java.awt.*;
import java.awt.geom.*;
import javax.swing.x;

public class TransformDemo {
public static void main(String[] args) {
EventQueue.invokelLater (new Runnable() {
public void run() {
TransformDemo demo = new TransformDemo();
}
b;

public TransformDemo() {
frame = new JFrame("Transformation Demo");
DrawRegion drawRegion = new DrawRegion();
frame.getContentPane () .add (drawRegion) ;

i53120-spring2015-ozgelen-lecII.5

frame.setSize (WINDOW_WIDTH, WINDOW_HEIGHT) ;
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
frame.setVisible(true);

private JFrame frame;
private static final int WINDOW_WIDTH = 600;
private static final int WINDOW_HEIGHT = 500;

class DrawRegion extends JPanel {
public void paintComponent (Graphics g) {
super.paintComponent (g) ;
setBackground(Color.WHITE) ;
Graphics2D g2 = (Graphics2D) g;

int rect_width = 50;
int rect_height = 30;

Ellipse2D oval = new Ellipse2D.Float(0, 0, rect_width, rect_height);
Rectangle2D rect = new Rectangle2D.Float(0, 0, rect_width, rect_heig]

¢i53120-spring2015-ozgelen-lecII.5

12

ht) ;

Ellipse2D center = new Ellipse2D.Float((WINDOW_WIDTH - 5)/2,
(WINDOW_HEIGHT - 5)/2,
10,
10);

g2.setPaint (Color.ORANGE) ;

g2.fill(center);

g2.setPaint(Color.RED);
g2.draw(rect);
g2.fill(oval);

// save the current transform
AffineTransform savedTransform = g2.getTransform();

// change the transformation to move the ellipse

g2.translate ((WINDOW_WIDTH - rect_width)/2, (WINDOW_HEIGHT - rect_he

g2.rotate(Math.toRadians(45));
g2.scale(2,2);
g2.setPaint (Color.BLUE) ;

ci53120-spring2015-ozgelen-lecII.5

ght)

g2.
g2.

1/

g2.

//
g2

g2.
.scale(1.5,1);
g2.
g2.
.fill(oval);

//

g2.

draw(rect);
fill(oval);

reset
setTransform(savedTransform) ;

change the transformation to move the rectangle

.translate(350,150);

rotate (Math.toRadians(-45));
setPaint (Color.GREEN) ;

draw(rect);

reset
setTransform(savedTransform) ;

cis3120-spring2015-ozgelen-lecll.5

