
COMMAND LINE ARGUMENTS

Today

• We will finish off our recap of C++ basics

– Type casting
– Enumeration types
– typedef
– Precedence and associativity
– Control flow
– Command line arguments

cis15-fall2007-parsons-lectI.5 2

Type casting

• Used to convert between fundamental (simple) data types (e.g.,
int, double, char)

• There are two ways to do this
• The C way (technically obsolete):

double d = 65.0;
int i = (double)d;
char c = (char)i;

cis15-fall2007-parsons-lectI.5 3

• The C++ way:

– static_cast: for conversions that are “well-defined,
portable, intertable”; e.g., like the C ways, above.

– reinterpret_cast: for conversions that are
system-dependent (not recommended).

– const_cast: to create a modifiable copy of a const
variable; data type into which the value is cast must always
be a pointer or reference (see on).

– dynamic_cast: for converting between classes (to be
discussed later in the term)

cis15-fall2007-parsons-lectI.5 4

• Syntax:

static_cast<type>(variable)
• In practice this looks something like:

double d = 65.5;
int i;

i = static_cast<int>(d);

converts a double to an integer.
• Const casting:

const int c = 5;

my_func(const_cast<int&>(c));

passes a modifiable copy of c to the function.

cis15-fall2007-parsons-lectI.5 5

Enumeration types

• Used to declare names for a set of related items
• For example:
enum suit { diamonds, clubs, hearts, spades };

• Internally, each name is assigned an int value.

• The value assigned to the first name is zero.
• The value of each member of the list is then one more than its

lefthand neighbor.

• So in the above example, diamonds is actually 0, clubs is 1,
and so on.

cis15-fall2007-parsons-lectI.5 6

• You create an enum data type if you want to use the names
instead of the values, so you shouldn’t really care what the
values are internally.

• If you need to set the value explicitly, you can:

enum answer { yes, no, maybe = -1);

• If you do this you have to be careful about duplicated values (see
enum.cpp).

• syntax:

enum tag { value0, value1, ... valueN };

• The tag is optional.

• You can also declare variables of the enumerated type by adding
the variable name after the closing }

cis15-fall2007-parsons-lectI.5 7

void showSuit(int card) {

enum suits { diamonds, clubs, hearts, spades } suit;

suit = static_cast<suits>(card / 13);

switch(suit) {
case diamonds: cout << "diamonds"; break;
case clubs: cout << "clubs"; break;
case hearts: cout << "hearts"; break;
case spades: cout << "spades"; break;
}

cout << endl;
}

cis15-fall2007-parsons-lectI.5 8

typedef

• The typedef keyword can be used to create names for data
types

• For example:

typedef int numbers; // "numbers" is my name
typedef char letters; // "letters" is my name
typedef suits enum { diamonds, clubs,

hearts, spades };

• Then you use the name you’ve created (numbers, letters or
suits from the example above)

cis15-fall2007-parsons-lectI.5 9

Precedence and associativity
• “Precedence” means the order in which multiple operators are

evaluated
• “Associativity” means which value an operator associates with,

which is particularly good to know if you have multiple
operators adjacent to a single variable

• Associativity is either:

– left to right, e.g., 3 - 2 (subtract 2 from 3)
– right to left, e.g., -3 (meaning negative 3)

• Note that ++ and −− can be either:

– postfix operators are left to right (meaning that you evaluate
the expression on the left first and then apply the operator)

– prefix operators are right to left (meaning that you apply the
operator first and then evaluate the expression on the right)

cis15-fall2007-parsons-lectI.5 10

Precedence and associativity table
(listed in order of precedence)

operator associativity
:: (global scope), :: (class scope) left to right
[], − >, ++ (postfix), −− (postfix), dynamic_cast<type> (etc) left to right
++ (prefix); −− (postfix), !, sizeof(), + (unary), − (unary), ∗ (indirection) right to left
∗, /, % left to right
+, − left to right
<<, >> left to right
<, <=, > >= left to right
==, ! = left to right
& left to right
∧ left to right
| left to right
&& left to right
|| left to right
? : left to right
=, + =, − =, ∗ =, / =, % =, >>=, <<=, & =, ∧ =, | = left to right

cis15-fall2007-parsons-lectI.5 11

Control flow

• Branching: if, if-else, switch
• Looping: for, while, do...while
• Interruption: break, continue

cis15-fall2007-parsons-lectI.5 12

Command-line arguments

• Example:

#include <iostream>
using namespace std;
int main(int argc, char **argv) {

cout << "argc = " << argc << endl;
for (int i=0; i<argc; i++) {

cout << "[" << i << "]=" << argv[i] << endl;
}

} // end of main()

cis15-fall2007-parsons-lectI.5 13

• Executed from the unix command-line like this:

unix> ./a.out asdf 45
argc = 3
[0]=./a.out
[1]=asdf
[2]=45

• So we have a way of passing an arbitrary number of arguments
to a program.

cis15-fall2007-parsons-lectI.5 14

Summary

• This lecture finished up our quick revision of the material from
CIS 1.5

• We looked at:

– Type casting
– Enumeration types
– typedef
– Precedence and associativity
– Control flow
– Command line arguments

• The new thing we covered was the Unix/C++ mechanism for
handling command line arguments.

cis15-fall2007-parsons-lectI.5 15

