
OBJECTS AND CLASS DESIGN

Today

•We will start to talk about object-oriented programming

• In particular we will talk about struct and class.

•We will show how to use these features of C++ to define
aggregate data types.

•We will show how to define methods that operate on these data
types.

• This work is based on Pohl, Chapter 4.

•Much of the work we will do for the next couple of weeks will be
concerned not only with what we can do in C++, but also the
style in which we do it.

cis15-fall2007-parsons-lectII.1 2

Aggregate data types

• New today: class and struct

• struct comes from C

• class is new in C++

• Both are aggregate types, meaning that they group together
multiple fields of data.

• For example:

struct point {
double x, y;

};

• Don’t forget to put a semi-colon at the end of the structure
definition!

cis15-fall2007-parsons-lectII.1 3

Aside: why is point useful?

• The idea behind point is that it represents information about
the location of something.

• Think of it as a pair of (Cartesian) coordinates.

•We group the coordinates together because they make no sense
separately — if we have the x coordinate of a thing, then it has a
y coordinate also.

•We will use point when we write a simulation of small
eco-system. We will do this in some of the homeworks.

cis15-fall2007-parsons-lectII.1 4

Back to aggregate data types

• In C, the tag (point) is optional and does not constitute a data
type (you need to use typedef as well).

• In C++, the tag is considered a data type, hence the above
example is a data type definition.

• This means that you can use point as a data type, e.g.:

point p;

• In other words, you can declare a variable p which is of type
point.

cis15-fall2007-parsons-lectII.1 5

• The fields or elements of an aggregate data type are called
members.

•Members are referred to using “dot notation”, e.g.:

p.x = 7.0; p.y = 10.3;

• You can also use a pointer to access members of an aggregate
data type, e.g.:

p->x = 12.3;

but we will discuss pointers in the next unit, so don’t worry
about this now...

• The fields or elements of an aggregate data type are called
members.

cis15-fall2007-parsons-lectII.1 6

• You can also declare a structure and a variable of that type in the
same statement, e.g.:

struct {
double x, y;

} myPoints[3] = { {1, 2}, {3, 4}, {5, 6} };

defines the array myPoints to hold three elements each of
which is a struct which holds two doubles, and sets the
values of these.

• This is not the clearest way of doing things. I would prefer:

struct point {
double x, y;

};

point myPoints[3] = { {1, 2}, {3, 4}, {5, 6} };

cis15-fall2007-parsons-lectII.1 7

Member functions

• In C++, members of aggregate data types can be functions

• (C only allows data members)

• In object-oriented programming (OOP) lingo, the word
“method” is often used instead of “function”

• The reason to define functions inside an aggregate data type is to
follow the OOP principle of encapsulation—operations should be
packaged with data

• This is a style thing.

• For example:

cis15-fall2007-parsons-lectII.1 8

#include <iostream>
using namespace std;

struct point {
double x, y;
void print() {
cout << "(" << x << "," << y << ")\n";

}
void set(double u, double v) {
x = u;
y = v;

}
}; // end of struct--don’t forget semi-colon!

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

}

cis15-fall2007-parsons-lectII.1 9

• Notes:

– Notice that the set method changes the values of the data
members—this is considered good OOP practise

– Defining the methods inside the struct definition is called
“in-line declaration”; this is generally only okay for short,
concise methods

• The class scope operator can be used when in-line declarations are
inappropriate.

• For example:

cis15-fall2007-parsons-lectII.1 10

#include <iostream>
using namespace std;

struct point {
double x, y;
void print();
void set(double u, double v);

};

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {
x = u;
y = v;

} // end of set()

cis15-fall2007-parsons-lectII.1 11

• The methods can then be invoked from main, just as before:

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

} // end of main()

cis15-fall2007-parsons-lectII.1 12

Public and private access

•Members of structures can be public or private

• publicmeans that any code can access the members

• private means that only code inside the class or struct can
access the members (or “friend” classes, to be discussed later in
the term)

• Typically, following good OOP practice, all data members are
private and only function members are public (but not
all—only those that need to be accessed outside of the struct or
class).

cis15-fall2007-parsons-lectII.1 13

• For example:

struct point {
public:

void print();
void set(double u, double v);

private:
double x, y;

}; // end of struct--don’t forget semi-colon!

(the rest of the example code is the same as the previous one)

cis15-fall2007-parsons-lectII.1 14

“class” vs “struct”

• The difference between structs and classes is:

– In a struct, the members are public by default

– In a class, the members are private by default

• For example:

cis15-fall2007-parsons-lectII.1 15

#include <iostream>
using namespace std;

class point {
double x, y;

public:
void print();
void set(double u, double v);

}; // end of struct--don’t forget semi-colon!

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

void point::set(double u, double v) {
x = u;
y = v;

} // end of set()

cis15-fall2007-parsons-lectII.1 16

• main looks the same as before:

int main() {
point w;
w.set(1.2, 3.4);
cout << "point = ";
w.print();

} // end of main()

• In this example, x and y are private and the methods are public.

• Otherwise, class and struct are the same

• But by convention, C++ programmers tend to use class

cis15-fall2007-parsons-lectII.1 17

Class scope

• The class scope operator is two colons (::), as in our example:

void point::print() const {
cout << "(" << x << "," << y << ")\n";

}

• The :: operator has the highest precedence in the language, so it
always gets evaluated first

• There are two versions of the operator: binary and unary

• The binary version is the one we used before:
point::print(), which is used to refer to a variable’s “class
scope” (also called “local scope”).

• The unary version is like this: ::count and is used to refer to a
variable’s “external scope” (e.g., for a global variable).

cis15-fall2007-parsons-lectII.1 18

• Here is a (maybe) confusing example from the book:

int count = 0; // declare global variable

void how_many(double w[], double x, int& count) {
for (int i=0; i<N; ++i) {
count += (w[i] == x); // local count

}
++::count; // global count

} // end of how_many()

• This is only necessary since count is declared twice

• If you didn’t have the ::count, then the second time, it would
also refer to the local variable

• It is better practise not to use global variables; or at least if you
do, give them unique names to avoid confusion :-)

cis15-fall2007-parsons-lectII.1 19

Nested classes

• Classes can be nested — one class is placed inside another.

• Here’s another confusing example from the book:

char c; // global scope

class X {
public:
char c; // local scope in class X
class Y {
public:
void foo(char e) { X t; ::c = t.c = c = e; }

private:
char c; // local scope in class Y

};
};

cis15-fall2007-parsons-lectII.1 20

• The scope of the first c is ::c.

• The scope of the second c is X::c.

• The scope of the third (last) c is X::Y::c

• The inner class, Y can only be referenced from within X.

• So, you can only create instances of Y within Y, you can only
access even the public the data members of Y from within X.

• If this sounds overly confusing, then don’t worry.

• You should be able to write all the programs you need without
using nested classes.

cis15-fall2007-parsons-lectII.1 21

“this” pointer

• The keyword this is used to refer to an instance of a class from
within itself.

• It is a pointer— something we will discuss at length in the next
unit

• For example:

point inverse() {
x = -x;
y = -y;
return (*this);

}

• In this example, the function returns a pointer to the object that
is calling it

•We’ll come back to this when we discuss pointers

cis15-fall2007-parsons-lectII.1 22

“static” members

• The keyword static is used to refer to data members of a class
that are the same across all instances of the class.

• In other words, it is independent of any class variable

• For example in the following program, a.dimensions and
b.dimensions both have value 2.

cis15-fall2007-parsons-lectII.1 23

class point {
public:
static int dimensions;
.
.

};
.
.
int main() {

.

.
point::dimensions = 2; // initialize point
.
point a, b;
.

}

cis15-fall2007-parsons-lectII.1 24

“const” members and “mutable”
• Data members with the const keyword in their definition
cannot be modified.

• For example:

class point {
double x, y;
public:

const int dimensions = 2;
void print() const;

};

void point::print() {
cout << "(" << x << "," << y << ")\n";

} // end of print()

• dimensions cannot be modified.

cis15-fall2007-parsons-lectII.1 25

• Confusingly, you can use the same keyword const along with
function members.

• For example:

class point {
double x, y;
public:

const int dimensions = 2;
void print() const;

};

void point::print() const{
cout << "(" << x << "," << y << ")\n";

} // end of print()

• This says that print is not allowed to modify any of the data
members of point.

cis15-fall2007-parsons-lectII.1 26

•Without specifying a method as const, it is allowed to alter any
of the data members.

• Just to confuse the picture even further we have the keyword
mutable.

• If, in some class definition, we define:

mutable int delta;

it means that delta can be modified by anymethod for that
class, even if the method is defined as being const.

cis15-fall2007-parsons-lectII.1 27

Special types of classes: “containers”

• There are several special types of classes in C++.

• The first we will discuss is called a container.

• It is a class designed to hold large numbers of objects.

• An example of a container is a stack, a class which can hold
information in such a way that the first thing placed into the
stack is the last thing to be removed from the stack.

• Our example will hold characters, and you can find it on the
class webpage — it is the program basic-stack.cpp.

cis15-fall2007-parsons-lectII.1 28

#include <iostream> using namespace std;

class ch_stack {
public:
void reset() { top = EMPTY; }
void push(char c) { s[++top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return(top==EMPTY); }
bool full() const { return(top==FULL); }

private:
enum{ max_len = 100, EMPTY = -1, FULL = max_len - 1 };
char s[max_len];
int top;

};

cis15-fall2007-parsons-lectII.1 29

int main() {
ch_stack s;
char str[40] = { "hello world!" };
int i = 0;
cout << "str=" << str << endl;
s.reset();
while(str[i] && ! s.full()) {
s.push(str[i++]);

}
cout << "reversed str=";
while (! s.empty()) {
cout << s.pop();

}
cout << endl;

} // end of main()

cis15-fall2007-parsons-lectII.1 30

Aside: why is stack useful?

• There are several reasons.

• First, it is the simplest example of a dynamic data-structure —
one where the memory that is uses is determined at run-time not
compile-time.

• You will meet many other kinds of dynamic data-structure in the
future, and understanding a stack will help you in
understanding those others.

• Second, a run-time stack system is a system of memory allocation
commonly used on most computers to keep track of how much
memory is available to a program and allocates pieces of it as
they are needed.

cis15-fall2007-parsons-lectII.1 31

•When a function is called, the memory required for the function
(e.g., its local variables) is allocated from (pushed onto) the stack;
when the function exits, the memory is freed from (popped off) the
stack

• Thus stacks are fundamental to the way that all computer
programs work.

cis15-fall2007-parsons-lectII.1 32

Class design

• Data members should be private (“hidden”)

• Function members are often public (but not always—private
function members can be used for computations internal to a
class).

• Functions that do not modify data members should be const

• Pointers add indirection (we’ll talk about that later)

• A uniform set of functions should be included: set(), get(),
print()

cis15-fall2007-parsons-lectII.1 33

• UML (unified modeling language) provides a graphical method
for representing classes

point
dimension

x
y

print()
set()
inverse()

cis15-fall2007-parsons-lectII.1 34

Summary

• This lecture introduced the basics of object-oriented
programming.

• It showed how struct and class can be used to create
aggregate datatypes and the methods for those types.

• It discussed public and private methods, and how these should
be used in good class design.

• The lecture also looked at static, const and mutable, and
mentioned features such as class nesting, and the this pointer.

cis15-fall2007-parsons-lectII.1 35

