OBJECTS AND CLASS DESIGN

Today

e We will start to talk about object-oriented programming
e In particular we will talk about st r uct and cl ass.

o We will show how to use these features of C++ to define
aggregate data types.

® We will show how to define methods that operate on these data
types.

® This work is based on Pohl, Chapter 4.

® Much of the work we will do for the next couple of weeks will be

concerned not only with what we can do in C++, but also the
style in which we do it.

cis15-fall2007-parsons-lectll.1 2

Aggregate data types

® New today: cl ass and st r uct
e struct comes from C
e c| ass is new in C++

® Both are aggregate types, meaning that they group together
multiple fields of data.

® For example:

struct point {

doubl e x, v;
b
® Don'’t forget to put a semi-colon at the end of the structure
definition!

cis15-fall2007-parsons-lectlI.1

Aside: why is poi nt useful?

® The idea behind poi nt is that it represents information about
the location of something.

® Think of it as a pair of (Cartesian) coordinates.

® We group the coordinates together because they make no sense
separately — if we have the x coordinate of a thing, then it has a
y coordinate also.

e We will use poi nt when we write a simulation of small
eco-system. We will do this in some of the homeworks.

cis15-fall2007-parsons-lectll.1

Back to aggregate data types

e In C, the tag (poi nt) is optional and does not constitute a data
type (you need to use t ypedef as well).

e In C++, the tag is considered a data type, hence the above
example is a data type definition.

® This means that you can use poi nt as a data type, e.g.:
poi nt p;

® In other words, you can declare a variable p which is of type
poi nt .

cis15-fall2007-parsons-lectll.1

® The fields or elements of an aggregate data type are called
members.

® Members are referred to using “dot notation”, e.g.:
p.x = 7.0; p.y = 10. 3;

® You can also use a pointer to access members of an aggregate
data type, e.g.:

p->x = 12. 3;

but we will discuss pointers in the next unit, so don’t worry
about this now...

® The fields or elements of an aggregate data type are called
members.

cis15-fall2007-parsons-lectll.1

® You can also declare a structure and a variable of that type in the
same statement, e.g.:

struct {
doubl e x, v;

} nyPoints[3] ={ {1, 2}, {3, 4}, {5, 6} };

defines the array myPoi nt s to hold three elements each of
which is a st r uct which holds two doubl es, and sets the
values of these.

e This is not the clearest way of doing things. I would prefer:

struct point {
doubl e x, v;

'
point nyPoints[3] ={ {1, 2}, {3, 4}, {5, 6} };

cis15-fall2007-parsons-lectll.1 7

Member functions

e In C++, members of aggregate data types can be functions
® (C only allows data members)

® In object-oriented programming (OOP) lingo, the word
“method” is often used instead of “function”

® The reason to define functions inside an aggregate data type is to
follow the OOP principle of encapsulation—operations should be
packaged with data

e This is a style thing.

® For example:

cis15-fall2007-parsons-lectll.1 8

#i ncl ude <i ostreanp
usi ng nanespace std;

struct point {

doubl e x, v;
void print() {
cout << "(" << x << "," &<y << ")\n";
}
voi d set(double u, double v) {
X = u;
y =V,
}

}; I/ end of struct--don’t forget sem -col on!

int main() {
poi nt w;
w.set(1.2, 3.4);

cout << "point =";
w. print();

cis15-fall2007-parsons-lectll.1

e Notes:

— Notice that the set method changes the values of the data
members—this is considered good OOP practise

— Defining the methods inside the st r uct definition is called
“in-line declaration”; this is generally only okay for short,
concise methods

® The class scope operator can be used when in-line declarations are
inappropriate.

® For example:

cis15-fall2007-parsons-lectll.1 10

#i ncl ude <i ostreanp
usi ng nanespace std;

struct point {

doubl e x, v;
void print();
voi d set(double u, double v);
b
void point::print() {
cout << "(" << x << "," &<y << ")\n";
} /] end of print()
voi d point::set(double u, double v) {

X = U,

y = v,
} /1 end of set()

cis15-fall2007-parsons-lectll.1

11

® The methods can then be invoked from nai n, just as before:

Int main() {
poi nt w,
w.set(1.2, 3.4);
cout << "point =";
wW. print();

} /'l end of main()

cis15-fall2007-parsons-lectll.1

12

Public and private access

e Members of structures can be publ i c or pri vate
® publ | ¢ means that any code can access the members

® pri vat e means that only code inside the class or struct can
access the members (or “friend” classes, to be discussed later in
the term)

* Typically, following good OOP practice, all data members are
pri vat e and only function members are publ i ¢ (but not
all—only those that need to be accessed outside of the struct or
class).

cis15-fall2007-parsons-lectlI.1

13

® For example:

struct point {
publ i c:
void print();
void set(double u, double v);
private:
doubl e x, v;
}; /'l end of struct--don’t forget sem -col on!

(the rest of the example code is the same as the previous one)

cis15-fall2007-parsons-lectll.1

14

“class” vs “struct”

e The difference between structs and classes is:

—Inastruct, the members are publ i ¢ by default
—In a cl ass, the members are pri vat e by default

® For example:

cis15-fall2007-parsons-lectll.1

15

#i ncl ude <i ostreanp
usi ng nanespace std;

cl ass point {

doubl e x, v;
publ i c:
void print();

voi d set(double u, double v);
}; /1l end of struct--don’t forget sem -col on!

void point::print() {
cout << "(" << x <<
} /1 end of print()

"<y << ")\ n"

void point::set(double u, double v) {
X = u;
y = Vv,

} /1l end of set()

cis15-fall2007-parsons-lectll.1

e mai N looks the same as before:

Int main() {
poi nt w,
w.set(1.2, 3.4);
cout << "point =";
W. print();

} /'l end of main()

* In this example, X and y are private and the methods are public.
e Otherwise, class and struct are the same

® But by convention, C++ programmers tend to use cl ass

cis15-fall2007-parsons-lectll.1 17

Class scope

® The class scope operator is two colons (: :), as in our example:

void point::print() const {
cout << "(" << x << """ &<y << ")\n",

}

® The : : operator has the highest precedence in the language, so it
always gets evaluated first

® There are two versions of the operator: binary and unary

® The binary version is the one we used before:
poi nt:: print(),which is used to refer to a variable’s
scope” (also called “local scope”).

1

class

® The unary version is like this: : : count and is used to refer to a
variable’s “external scope” (e.g., for a global variable).

cis15-fall2007-parsons-lectll.1 18

® Here is a (maybe) confusing example from the book:

int count = O; // declare global variable

voi d how many(double wW], double x, int& count) {
for (int i=0; i<N, ++i) {
count += (Wi] == x); // local count

}

++::count; // gl obal count
} /'l end of how many()

e This is only necessary since count is declared twice

e If you didn’t have the : : count , then the second time, it would
also refer to the local variable

® [t is better practise not to use global variables; or at least if you
do, give them unique names to avoid confusion :-)

cis15-fall2007-parsons-lectlIl.1 19

Nested classes

® Classes can be nested — one class is placed inside another.

® Here’s another confusing example from the book:

char c; [// global scope

class X {
publi c:
char c; /'l local scope in class X
class Y {
publi c:
void foo(char e) { Xt; ::c =t.c =c¢c = e
private:

char c; // local scope in class Y
}s
}s

cis15-fall2007-parsons-lectll.1

20

® The scope of the firstc is: : C.

® The scope of the second c is X: : cC.

® The scope of the third (last)cis X: 1 Y:: C

® The inner class, Y can only be referenced from within X.

® So, you can only create instances of Y within Y, you can only
access even the public the data members of Y from within X.

e If this sounds overly confusing, then don’t worry.

® You should be able to write all the programs you need without
using nested classes.

cis15-fall2007-parsons-lectll.1

21

“this” pointer

® The keyword t hi s is used to refer to an instance of a class from
within itself.

e [t is a pointer — something we will discuss at length in the next
unit
® For example:

poi nt i nverse() {
X = -X;
y = -Y,
return (*this);

}

* In this example, the function returns a pointer to the object that
is calling it

e We'll come back to this when we discuss pointers

cis15-fall2007-parsons-lectlIl.1 22

“static” members

® The keyword st at i ¢ is used to refer to data members of a class
that are the same across all instances of the class.

® In other words, it is independent of any class variable

® For example in the following program, a. di nensi ons and
b. di nensi ons both have value 2.

cis15-fall2007-parsons-lectll.1 23

cl ass point {
publi c:
static i nt dimensions;

}
int mai n() {

point::dinmensions = 2; // initialize point

poi nt a, b;

cis15-fall2007-parsons-lectll.1

24

“const” members and “mutable”

® Data members with the const keyword in their definition
cannot be modified.

® For example:

cl ass point {
doubl e x, v;
publ i c:
const int dinmensions = 2;
void print() const;

i

void point::print() {
cout << "(" << x << "," <<y << ")\n";
} /] end of print()

e di nensi ons cannot be modified.

cis15-fall2007-parsons-lectll.1

25

e Confusingly, you can use the same keyword const along with
function members.

® For example:

cl ass point {
doubl e x, v;
publ i c:
const int dinmensions = 2;
void print() const;

i

void point::print() const{
cout << "(" << x << """ &<y << ")\n",
} /'l end of print()

® This says that pri nt is not allowed to modify any of the data
members of poi nt .

cis15-fall2007-parsons-lectlI.1

26

e Without specifying a method as const, it is allowed to alter any
of the data members.

® Just to confuse the picture even further we have the keyword
mut abl e.

e [f, in some class definition, we define:
mut abl e 1 nt delta;

it means that del t a can be moditied by any method for that
class, even if the method is defined as being const .

cis15-fall2007-parsons-lectll.1 27

Special types of classes: “containers”

® There are several special types of classes in C++.
® The first we will discuss is called a container.
e It is a class designed to hold large numbers of objects.

* An example of a container is a stack, a class which can hold
information in such a way that the first thing placed into the
stack is the last thing to be removed from the stack.

® Our example will hold characters, and you can find it on the
class webpage — it is the program basi c- st ack. cpp.

cis15-fall2007-parsons-lectll.1

28

#i ncl ude <i ostreant using nanmespace std,;

cl ass ch_stack {
publi c:
void reset() { top = EMPTY,; }
voi d push(char ¢) { s[++top] = c; }
char pop() { return s[top--]; }
char top _of () const { return s[top]; }
bool enpty() const { return(top==EMPTY), }
bool full() const { return(top==FULL); }
private:
enun{ max_|len = 100, EMPTY = -1, FULL = nmax _len - 1 };
char s[max_|en];
I nt top;
}s

cis15-fall2007-parsons-lectll.1 29

Int main() {
ch_stack s;
char str[40] ={ "hello world!" };
Int 1 = 0;
cout << "str=" << str << endl;
s.reset();
while(str[i] && ! s.full()) {
S.push(str[i++]);
}

cout << "reversed str=";

while (! s.empty()) {
cout << s. pop();

}

cout << endl;
} /] end of main()

cis15-fall2007-parsons-lectll.1

30

Aside: why is st ack useful?

® There are several reasons.

e First, it is the simplest example of a dynamic data-structure —
one where the memory that is uses is determined at run-time not
compile-time.

* You will meet many other kinds of dynamic data-structure in the
future, and understanding a stack will help you in
understanding those others.

® Second, a run-time stack system is a system of memory allocation
commonly used on most computers to keep track of how much
memory is available to a program and allocates pieces of it as
they are needed.

cis15-fall2007-parsons-lectll.1 31

® When a function is called, the memory required for the function
(e.g., its local variables) is allocated from (pushed onto) the stack;
when the function exits, the memory is freed from (popped off) the
stack

® Thus stacks are fundamental to the way that all computer
programs work.

cis15-fall2007-parsons-lectll.1 32

Class design

¢ Data members should be pri vat e (“hidden”)

e Function members are often publ i ¢ (but not always—private
function members can be used for computations internal to a
class).

e Functions that do not modify data members should be const
e Pointers add indirection (we’ll talk about that later)

e A uniform set of functions should be included: set (), get (),
print()

cis15-fall2007-parsons-lectll.1

33

e UML (unified modeling language) provides a graphical method
for representing classes

point
dimension
X

y
print()
set()
inverse()

cis15-fall2007-parsons-lectll.1 34

Summary

® This lecture introduced the basics of object-oriented
programming.

e [t showed how st ruct and cl ass can be used to create
aggregate datatypes and the methods for those types.

e It discussed public and private methods, and how these should
be used in good class design.

e The lecture also looked at st ati ¢, const and nut abl e, and
mentioned features such as class nesting, and the t hi s pointer.

cis15-fall2007-parsons-lectll.1 35

