
I/O AND C-STYLE STRINGS

Today

• Today we will look at:

– How strings are handled in C/C++

– How we do input/output in C++

– How we do input/output in C.

• This material is taken from Pohl, Chapter 9.

cis15-fall2007-parsons-lectIII.1 2

C-style strings

• Storing multiple characters in a single variable

• Data type is still char

– BUT it has a length

• Last character the is terminator: ’\0’, aka NULL

• String constants are surrounded by double quotes: "

• Example:

char s[6] = "ABCDE";

cis15-fall2007-parsons-lectIII.1 3

• Example:

char s[6] = "ABCDE";

• Storage looks like this: A B C D E \0

• So with strings, you really only access the values stored at
indices 0 through length − 2.

• The value stored at length − 1 is always \0

cis15-fall2007-parsons-lectIII.1 4

• Printing strings

• Format sequence: %s

• Example:

#include <stdio.h> int main() {
char str[6] = "ABCDE";
printf("str = %s\n", str);

} /* end of main() */

• Output:

ABCDE

cis15-fall2007-parsons-lectIII.1 5

C string library

• To use the string library, include the header in your C source file:

#include <string.h>

• Provides a number of functions for manipulating strings.

cis15-fall2007-parsons-lectIII.1 6

String length

int strlen(char *s);

• This function returns the number of characters in s.

• Note that this is NOT the same thing as the number of characters
allocated for the string array

cis15-fall2007-parsons-lectIII.1 7

String comparison

int strcmp(const char *s1, const char *s2);

“This function returns an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is greater than,
equal to, or less than the string pointed to by s2
respectively. The sign of a non-zero return value is
determined by the sign of the difference between the
values of the first pair of bytes that differ in the strings
being compared.”

• For more information and more string functions, do (e.g.):

unix> man strcmp

cis15-fall2007-parsons-lectIII.1 8

Copying strings

char *strcpy(char *dest, char *source);

• Copies characters from source array into dest array up to
NULL

char *strncpy(char *dest,
char *source, int num);

• Copies characters from source array into dest array; stops
after num characters.

• If no NULL before the numth character is copied; appends NULL

cis15-fall2007-parsons-lectIII.1 9

Search functions

char *strchr(const char *source,
const char ch);

• Returns pointer to first occurrence of ch in source;

char *strstr(const char *source,
const char *search);

• Returns pointer to first occurrence of search in source

cis15-fall2007-parsons-lectIII.1 10

Parsing function

char *strtok(char *s1, const char *s2);

• Breaks string s1 into a series of tokens, delimited by s2

• Called the first time with s1 equal to the string you want to
break up

• Called subsequent times with NULL as the first argument

• Each time is called, it returns the next token on the string

• Returns null when no more tokens remain

cis15-fall2007-parsons-lectIII.1 11

Parsing function

char inputline[1024];
char *name, *rank, *serial_num;
printf("enter name+rank+serial number: ");
scanf("%s", inputline);
name = strtok(inputline,"+");
rank = strtok(null,"+");
serial_num = strtok(null,"+");

cis15-fall2007-parsons-lectIII.1 12

Formatting functions

• Using internal buffers:

int sscanf(char *string, char *format, ...)

• Parse the contents of string according to format

• Place the parsed items into 3rd, 4th, 5th, ... argument

• Return the number of successful conversions

int n;
string str;
sscanf(mystring, ’’%s %d’’, str, &n);

cis15-fall2007-parsons-lectIII.1 13

• Output also:

int sprintf(char *buffer, char *format, ...)

– Produce a string formatted according to format

– Place this string into the buffer

– The 3rd, 4th, 5th, ... arguments are formatted

– Return number of successful conversions

• Format characters are like printf and scanf (see on)

cis15-fall2007-parsons-lectIII.1 14

Input and output.

• Input and output is typically abbreviated “I/O”

• Standard C I/O is handled in stdio.h
which can be implemented in C++ as is or via cstdio

• Stream I/O — like a “stream” of bytes flowing in or out of the
computer — is handled in C++ using iostream

• Stream I/O is more in keeping with C++.

cis15-fall2007-parsons-lectIII.1 15

Output class: ostream.

• The standard output stream is ostream

• It’s declared in the iostream header

• Prototypes for public members:

ostream& operator<<(int i);
ostream& operator<<(long i);
ostream& operator<<(double x);
ostream& operator<<(char c);
ostream& operator<<(const char *s);
ostream& put(char c);
ostream& write(const char *p, int n);
ostream& flush();

cis15-fall2007-parsons-lectIII.1 16

• You have already been using cout, as in:

cout << "hello world!\n";

• Note that cout is an object, and << is an operator (function).

• Perhaps new functions are:

– put(), which outputs a single character

– write(), which outputs N characters of a string

– flush(), which forces any pending characters for the stream
to be output

cis15-fall2007-parsons-lectIII.1 17

Formatted output.

• You can use newline (\n or endl) and tab (\t) to format output
nicely, as well as space

• Be aware of fixed width versus variable width fonts when planning
formatted output...

• There are some formatting functions in the ostream class:
setf(), precision(), width()

cis15-fall2007-parsons-lectIII.1 18

• C++ also has a set of “manipulator” functions in iomanip

• Some public functions:

– scientific, which prints numbers using scientific notation

– left, which left justifies output

– right, which right justifies output

– setw(int), which sets the width of the output field

– setfill(int), which sets the “fill” character

– setbase(int), which sets the base format

– setprecision(int), which sets floating point precision

cis15-fall2007-parsons-lectIII.1 19

Formatted output: Example
#include <iostream>
#include <cmath>
using namespace std;

int main() {
const int A = 5;
const double B = 3.4568;
double C;
cout << "Output using fixed precision, 2 decimal places:\n";
cout.setf(ios::fixed, ios::floatfield);
cout.precision(2);
cout << "B=" << B << endl;
cout << "Output using width=10, left justified:\n";
cout.setf(ios::left);
cout.width(10);
cout << "B=" << B << endl;
cout << "Output using width=10, right justified:\n";
cout.setf(ios::right);
cout.width(10);
cout << "B=" << B << endl;
cout << "You have to repeat the formatting if you want the same thing again:\n";
C = sin(B);
cout.setf(ios::right);
cout.width(10);
cout << "C=" << C << endl;

} // end of main()

cis15-fall2007-parsons-lectIII.1 20

• Sample outout:

Output using fixed precision, 2 decimal places:
B=3.46
Output using width=10, left justified:
B= 3.46
Output using width=10, right justified:

B=3.46
Repeat the formatting if you want the same again:

C=-0.31

cis15-fall2007-parsons-lectIII.1 21

Formatted output: Example 2

#include <iostream>
#include <iomanip>
using namespace std;

int main() {
long double r;
cout << "Enter length of side: ";
cin >> r;
cout << "no formatting: area=" << r*r << endl;
cout << "width: area=" << setw(20) << r*r << endl;
cout << "width and precision: area="

<< setw(20) << setprecision(10) << r*r << endl;
cout << "width, precision, fill: area=" << setfill(’*’)

<< setw(20) << setprecision(10) << r*r << endl;
} // end of main()

cis15-fall2007-parsons-lectIII.1 22

• Sample output:

Enter side: 34
no formatting: area=1156
width: area= 1156
width and precision: area= 1156
width, precision, fill: area=****************1156

cis15-fall2007-parsons-lectIII.1 23

Output and user-defined types

• Typically, user-defined types (classes) have a print() function
that specify how the data members of that type should be output.

• Example:

class point {
public:

void print() const {
cout << "(" << x << "," << y << ")" << endl;

} // end of print()
private:

int x, y;
} // end of class point

cis15-fall2007-parsons-lectIII.1 24

Input class: istream.

• The standard output stream is ostream

• It’s declared in the iostream header

• Prototypes for public members:

istream& operator>>(int& i);
istream& operator>>(long& i);
istream& operator>>(double& x);
istream& operator>>(char& c);
istream& operator>>(char *s);
istream& get(char &c);
istream& get(char *s, int n, char c=’\n’);
istream& getline(char *s, int n, char c=’\n’);
istream& read(char *s, int n);

cis15-fall2007-parsons-lectIII.1 25

• You have already been using cin, as in:

int i;
cout << "enter a number: ";
cin >> i;

• Perhaps new functions are:

– get(), which reads in either a single character or a string of
specified length

– getline(), which reads in a line (string) of specified length

– read(), which also reads in a string of specified length

cis15-fall2007-parsons-lectIII.1 26

• The functions that have n as a parameter, read in n-1 characters
from the keyboard and put a NULL (\0) string termination
character in the n-th position

• The functions that have char c=’\n’ as a parameter, read until
the specified delimiter is read in;

• The examples here use newline (\n), but any character is okay to
use

cis15-fall2007-parsons-lectIII.1 27

Files

• File handling involves three steps:

1. Opening the file (for reading or writing)

2. Reading from or writing to the file

3. Closing the file

• Files in C++ are sequential access.

• Think of a cursor that sits at a position in the file;

•With each read and write operation, you move that cursor’s
position in the file

cis15-fall2007-parsons-lectIII.1 28

• The last position in the file is called the “end-of-file”, which is
typically abbreviated as eof

• All the functions described on the next few slides are defined in
the either the <ifstream> header file (for files you want to read
from) or the <ofstream> header file (for files you want to write
to)

cis15-fall2007-parsons-lectIII.1 29

Opening a file for reading

• First you have to define a variable of type ifstream

• This “input file” variable will act like the cursor in the file and
will point sequentially from one character in the file to the next,
as you read characters from the file

• Then you have to open the file:

ifstream inFile; // declare input file variable
inFile.open("myfile.dat", ios::in); // open the file

• You should check to make sure the file was opened successfully

cis15-fall2007-parsons-lectIII.1 30

• If it was, then inFile will be assigned a number greater than 0.

• If there was an error, then inFile will be set to 0, which can also
be evaluated as the boolean value false; so you can test like
this:

if (! inFile) {
cout << "error opening input file!\n";
exit(1); // exit the program

}

• Note that the method ifstream.open() takes two arguments:

– filename: a string containing the name of the file you want
to open; this file is in the current working directory or else
you have to include a full path specification

– mode: which is set to ios::in when opening a file for input

cis15-fall2007-parsons-lectIII.1 31

Reading from a file.
• Once the file is open, you can read from it

• You read from it in almost the same way that you read from the
keyboard

•When you read from the keyboard, you use cin >> ...

•When you read from your input file, you use inFile >> ...

• Here is an example:

int x, y;
inFile >> x;
inFile >> y;

• Here is another example:

int x, y;
inFile >> x >> y;

cis15-fall2007-parsons-lectIII.1 32

•When reading from a file, you will need to check to make sure
you have not read past the end of the file.

• Do this by calling:

inFile.eof() which will:

– return true when you have gotten to the end of the file (i.e.,
read everything in the file)

– return false when there is still something to read inside the
file.

• For example:

while (! inFile.eof()) {
inFile >> x;
cout << "x = " << x << endl;

} // end of while loop

cis15-fall2007-parsons-lectIII.1 33

Opening a file for writing.

• first you have to define a variable of type ofstream;
this “output file” variable will act like the cursor in the file and
will point to the end of the file, advancing as you write
characters to the file

• then you have to open the file:

ofstream outFile; // declare output file variable
outFile.open("myfile.dat", ios::out); // open the file

• You should check to make sure the file was opened successfully.

• If it was, then outFilewill be assigned a number greater than 0.

• If there was an error, then outFile will be set to 0, which can
also be evaluated as the boolean value false;

cis15-fall2007-parsons-lectIII.1 34

• You can test like this:

if (! outFile) {
cout << "error opening output file!\n";
exit(1); // exit the program

}

• Note that the method ofstream.open() takes two arguments:

– filename: a string containing the name of the file you want
to open; this file is in the current working directory or else
you have to include a full path specification

– mode: which is set to ios::out when opening a file for
output

• This is rather like handling an input file, no?

cis15-fall2007-parsons-lectIII.1 35

Writing to a file.

• Once the file is open, you can write to it

• You write to it in almost the same way that you write to the
screen

•When you write to the screen, you use cout << ...

•When you write to your output file, you use outFile << ...

• Here is an example:

outFile << "hello world!\n";

• Here is another example:

int x;
outFile << "x = " << x << endl;

cis15-fall2007-parsons-lectIII.1 36

Closing a file.

•When you are done reading from or writing to a file, you need to
close the file

• You do this using the close() function, which is part of both
ifstream and ofstream

• So, to close a file that you opened for reading, you have do this:

ifstream.close(); // close input file

• And, to close a file that you opened for writing, you have do this:

ofstream.close(); // close output file

• That’s all!

cis15-fall2007-parsons-lectIII.1 37

Using strings as streams.

• You can also use a string as a stream

• Class stringstream allows this.

• In other words you can write output to a string or read input
from a string.

• The sstream header contains two data types:

– ostringstream for output

– istringstream for input

• Example on next slide.

cis15-fall2007-parsons-lectIII.1 38

#include <iostream>
#include <sstream>
using namespace std;

int main() {

#define MAXBUF 10
char buf[MAXBUF];
char c;
istringstream instring("my test string");
ostringstream outstring;
ostringstream outstring2(buf,ios::app);

// input is read from "instring"
instring >> c;
cout << "c=[" << c << "]\n";

// output is written to "outstring" and "outstring2"
outstring << c;
outstring << c;
cout << "outstring=[" << outstring.str() << "]\n";

outstring2 << ’A’;
outstring2 << ’B’;
outstring2 << ’C’;
outstring2 << "DEF";
cout << "outstring2=[" << outstring2.str() << "]\n";

}

cis15-fall2007-parsons-lectIII.1 39

• Sample output

c=[m]
outstring=[mm]
outstring2=[ABCDEF]

• You can define the outstring to work either as:

– out, start each “write” with an empty buffer.

– app, or ate, append each “write” to what is already in the
buffer.

cis15-fall2007-parsons-lectIII.1 40

ctype functions and macros

• Character handling library

#include <ctype.h>

• Digit recognition functions (bases 10 and 16)

• Alphanumeric character recognition

• Case recognition/conversion

• Character type recognition

cis15-fall2007-parsons-lectIII.1 41

• These are all of the form:

int isdigit(int c);

where the argument c is declared as an int, but it is intepreted
as a char

• So if c = ’0’ (i.e., the ASCII value ’0’, index=48), then the
function returns true (non-zero int)

• But if c = 0 (i.e., the ASCII value NULL, index=0), then the
function returns false (0)

cis15-fall2007-parsons-lectIII.1 42

• Digit recognition functions (bases 10 and 16)

• int isdigit(int c);

returns true (i.e., non-zero int) if c is a decimal digit (i.e., in the
range ’0’..’9’); returns 0 otherwise

• int isxdigit(int c);

returns true (i.e., non-zero int) if c is a hexadecimal digit (i.e., in
the range ’0’..’9’,’A’..’F’); returns 0 otherwise

cis15-fall2007-parsons-lectIII.1 43

• Alphanumeric character recognition

• int isalpha(int c);

returns true (i.e., non-zero int) if c is a letter (i.e., in the range
’A’..’Z’,’a’..’z’); returns 0 otherwise

• int isalnum(int c);

returns true (i.e., non-zero int) if c is an alphanumeric character
(i.e., in the range ’A’..’Z’,’a’..’z’,’0’..’9’); returns 0
otherwise

cis15-fall2007-parsons-lectIII.1 44

• Case recognition

• int islower(int c);

returns true (i.e., non-zero int) if c is a lowercase letter (i.e., in the
range ’a’..’z’); returns 0 otherwise

• int isupper(int c);

returns true (i.e., non-zero int) if c is an uppercase letter (i.e., in
the range ’A’..’Z’); returns 0 otherwise

cis15-fall2007-parsons-lectIII.1 45

• Case conversion

• int tolower(int c);

returns the value of c converted to a lowercase letter (does
nothing if c is not a letter or if c is already lowercase)

• int toupper(int c);

returns the value of c converted to an uppercase letter (does
nothing if c is not a letter or if c is already uppercase)

cis15-fall2007-parsons-lectIII.1 46

• Character type recognition

• int isspace(int c);

returns true (i.e., non-zero int) if c is a space; returns 0 otherwise

• int iscntrl(int c);

returns true (i.e., non-zero int) if c is a control character; returns 0
otherwise

cis15-fall2007-parsons-lectIII.1 47

• int ispunct(int c);

returns true (i.e., non-zero int) if c is a punctuation mark; returns
0 otherwise

• int isprint(int c);

returns true (i.e., non-zero int) if c is a printable character;
returns 0 otherwise

• int isgraph(int c);

returns true (i.e., non-zero int) if c is a graphics character; returns
0 otherwise

cis15-fall2007-parsons-lectIII.1 48

C style I/O

• #include <stdio.h>

OR

#include <cstdio> using namespace std;

• int printf(const char *format, ...) formatted
output to stdout

• note that there is also sprintf(), which is like the C++
ostringstream where you can write output to a string

cis15-fall2007-parsons-lectIII.1 49

• Formatting:

conversion argument description

character

c char prints a single character

d or i int prints an integer

u int prints an unsigned int

o int prints an integer in octal

x or X int prints an integer in hexadecimal

e or E float or double print in scientific notation

f float or double print floating point value

g or G float or double same as e,E,f, or f —

whichever uses fewest characters

s char* print a string

p void* print a pointer

% none print the % character

cis15-fall2007-parsons-lectIII.1 50

• Some flags:

flag description
- left justify
+ print plus or minus sign
0 print leading zeros (instead of spaces)

• Also specify field width and precision

• Example:

printf("i=%d s=%d f=6.3f m=43s",i,s,f,m);

cis15-fall2007-parsons-lectIII.1 51

• int scanf(const char *format, ...) formatted output
to stdout

• Note that there is also sscanf(), which is like the C++
istringstream where you can read input from string

• For formatting:
conversion argument description

character

c char* reads a single character

d int* reads a decimal integer

i int* reads an integer in decimal,

octal (leading 0) or hex (leading 0x)

u int* reads an unsigned int

o int* reads an integer in octal

x or X int* reads an integer in hexadecimal

e, E, f, F, g or G float or double reads a floating point value

s char* reads a string

p void** reads a pointer

cis15-fall2007-parsons-lectIII.1 52

stdio example

#include <stdio.h>

int main(void) {
int n = 0;
printf("how much wood could a woodchuck chuck\n");
printf("if a woodchuck could chuck wood? ");
scanf("%d",&n);
printf("a woodchuck could chuck %d pieces of wood!\n",n);
return 0;

}

• Running this gives something like:

> ./a.out
how much wood could a woodchuck chuck
if a woodchuck could chuck wood? 12345
the woodchuck can chuck 12345 pieces of wood!

cis15-fall2007-parsons-lectIII.1 53

Summary

• This lecture has looked at:

– Strings

– Input and output, both screen/keyboard and to files.

•When we do I/O using streams, we handle everything in a
pretty uniform way.

cis15-fall2007-parsons-lectIII.1 54

