
COMPOSITION AND INHERITANCE



Today

• Today we will look at:

– Composition; and

– Inheritance

• These are the cornerstones of object oriented programming.

• This material is taken from Pohl, Chapter 8.

cis15-fall2007-parsons-lectIV.1 2



An example

• Consider the program rabbit.cpp which you can download
from the class web site (Unit IV).

• This, rather like homework 2, models a small ecosystem which
holds:

– A rabbit

– Some carrots

• The rabbit runs around looking for carrots and eating them.

• Note that the way this is done is rather different from the way I
asked you to do homework 2.

• The class definition for the rabbit class is as follows

cis15-fall2007-parsons-lectIV.1 3



class rabbit {

private:
point location;
int consumed;

public:
rabbit(){consumed = 0;};
int getX() const;
int getY() const;
void set(int x, int y);
void print() const;
void move();
void move(direction d);
void eat();
bool hungry();

};

cis15-fall2007-parsons-lectIV.1 4



Composition

• The rabbit class includes a member of the point class, which
we have played with before.

•We say that rabbit is related to point by composition.

• This just means what we see here — one class has an instance of
another as a data member.

• Another example of composition in rabbit.cpp is that the
class world contains both carrot and rabbit instances.

cis15-fall2007-parsons-lectIV.1 5



• Several of the function members (methods) of rabbit look like
those for point.

– getX()

– getY()

– set(int x, int y)

• These data members provide a to alter the values of the
attributes of the instance of point that is a member of rabbit.

• Since the data member is private, we can’t just use the
function member of point.

cis15-fall2007-parsons-lectIV.1 6



• Other methods are new:

– move()

– eat()

– hungry()

• These give us the functionality we want from rabbit, allowing
it to move, to report whether it is hungry, and to eat.

• If you haven’t done so already, you should run the program
rabbit and see how it works.

• Now imagine that we want to extend the program to include a
fox, which runs around the world and eats rabbits.

• One way we could do this is to write a fox class that looks like
the following.

cis15-fall2007-parsons-lectIV.1 7



class fox {

private:
point location;
int consumed;

public:
fox(){consumed = 0;};
int getX() const;
int getY() const;
void set(int x, int y);
void print() const;
void move();
void move(direction d);
void eat();
bool hungry();

};

cis15-fall2007-parsons-lectIV.1 8



• This is exactly like the rabbit class since fox and rabbit are
so similar.

• Both have a location in the world, move around, and eat things.

• Since they are so similar, writing both out seems a bit repetitive,
and dull with it.

• It turns out that there is an alternative to doing this.

• The alternative is to use inheritance and this is considered better
style than having lots of classes with (more or less) the same
functionality.

cis15-fall2007-parsons-lectIV.1 9



Inheritance

• A program that handles the fox and rabbit example using
inheritance is rabbit2.cpp on the class web page.

• The relationship between the classes is summarised by:

animal

rabbit fox

• That is the class rabbit and the class fox are both subclasses of
the class animal.

• Alternatively, every instance of a rabbit is an instance of
animal and every instance of fox is an instance of animal.

cis15-fall2007-parsons-lectIV.1 10



•We define fox as:

class fox : public animal {

};

• This is the syntax for saying that fox has exactly the same
members as animal.

• The keyword public indicates that all the publicmembers of
animal remain public in fox.

• If we replaced public with private, then all the public
members of animal would become private in fox.

•We will say more about this next lecture.

cis15-fall2007-parsons-lectIV.1 11



• Normally we want to do more than have a subclass just be a
copy of the superclass.

•What we often want to do is to have the subclass add things to
the superclass.

• (In Java this is explicit. When we define a subclass it is by saying
it extends the superclass).

• rabbit is an example of this.

cis15-fall2007-parsons-lectIV.1 12



class rabbit : public animal {

private:

bool eaten;

public:

rabbit(){eaten = false;};
void beEaten();

};

void rabbit::beEaten(){
cout << "Drat that fox!" << endl;
eaten = true;

}

cis15-fall2007-parsons-lectIV.1 13



• Here rabbit is extended with:

– A private data member eaten, which records whether the
rabbit has been eaten by the fox; and

– A public function member beEaten that takes appropriate
action when the rabbit is eaten.

• Thus rabbit has all of the data members of animal as well as
the additional ones listed here.

• As a result we can do this:

rabbit peter;
peter.set(2, 3);

which calls the setmethod on the rabbit peter.

• rabbit inherits the setmethod from animal.

cis15-fall2007-parsons-lectIV.1 14



Overriding and inheritance

• A sub-class definition can re-define a function member defined
in the super-class.

• This is called overriding.

•We can, for example, override the definition of move in fox.

• The program rabbit3.cpp has:

class fox : public animal {

public:
void move();
void move(direction d);

};

giving new definitions for how the fox moves.

cis15-fall2007-parsons-lectIV.1 15



Aside: “protected”
• It turns out (as you can see in rabbit3.cpp) that to change the
definition of move we have to do some more work.

• The problem is that to move the fox, we have to change its
location.

• Now, location is private to animal, so fox cannot alter it.

• One answer is to make location not private but
protected.

• protected data members sit somewhere between public
members, which are accessible to any object, and private
members, which are only accessible within that class.

• Roughly speaking, protected members are like private data
members but are also accessible by members of derived classes.

•We will talk more about protected later on.

cis15-fall2007-parsons-lectIV.1 16



More inheritance

• Since rabbit is a subclass of animal, we can carry out any
operation on a rabbit that we can on a animal.

•We already know that this is the case where the operations are
function members of animal with simple parameters.

• Thus we can do:

rabbit peter;
peter.set(2, 3);
peter.move();

calling methods from animal on rabbit.

cis15-fall2007-parsons-lectIV.1 17



• It turns out we can go a bit further than this also.

• If we have:

bool animal::hungrier(animal a1, animal a2){
if(a1.consumed < a2.consumed){

return true;
}
else {

return false;
}

we can pass this two rabbits, two foxes, or a rabbit and a
fox.

cis15-fall2007-parsons-lectIV.1 18



Virtual functions

• The program rabbit4.cpp is a cleaner version of our little
ecosystem.

• By defining a class living, we can exploit the fact that carrot
has some aspects (to do with location) that are just like rabbit
and fox,.

•We have the class hierarchy:

animal

rabbit fox

living

plant

carrot

cis15-fall2007-parsons-lectIV.1 19



• Not all of the functions that exist in the sub-classes make sense in
the super class.

– For example, since plants do not move, it makes little sense to
have a move class in living.

• The function beEaten, does apply to all living things and so
could be defined in living.

• However, in our example, every class implements beEaten in
its own way.

• C++ style suggests that we should define functions like
beEaten that we know will be overridden as virtual functions.

•We do this by adding the keyword virtual before the function
prototype:

virtual void beEaten();

cis15-fall2007-parsons-lectIV.1 20



• The virtual function beEaten in living will never be called.

• All objects are carrots, rabbits, or foxes, and these all define their
own way to beEaten.

• In such cases we should define beEaten in living as a pure
virtual function.

•We do this by:

virtual void beEaten() = 0;

• Any class that has at least one pure virtual function is an abstract
class.

• You cannot create instances of abstract classes.

cis15-fall2007-parsons-lectIV.1 21



Summary

• This lecture has looked at a number of issues related to object
oriented programming in C++.

– Composition of classes

– Inheritance

– Overriding;

– Virtual functions; and

– Abstract classes.

cis15-fall2007-parsons-lectIV.1 22


