ARRAYS AND POINTERS

Today

¢ Today we will look at:

- Arrays
- Pointers
— Arrays of objects

e This material is kind of covered in Chapter 3 by Pohl.

e All the examples in these notes are on the class website.

cis15-fall2007-parsons-lectV.1

(Overview of arrays and pointers|

e Arrays and pointers are strongly related

int A[10]; /'l declare an array of 10 ints

int *pA; /] declare a pointer to an int

pA = &A[0]; // pA points to the Oth el enent
/1 of of A

pA = A // this has the sane effect

e Pointer arithmetic is meaningful with arrays:
If we do

PA = &A[0] ;
then = (pA + 1) points to Al 1]

cis15-fall2007-parsons-lectV.1

® Remember the difference between (*pA) + 1and=*(pA + 1)
(wWhich ==*pA + 1)

¢ Note that an array name is a pointer, so we can also do * (A +
1) and in general:

—-x(A+ i) == Ali] andsoare A + i == &A[i]
e The difference:

— An array name is a constant, and a pointer is not.

—So we can do: pA = Aand pA++ but we can NOT do: A =
pA or A++

e When an array name is passed to a function, what is really
passed is a pointer to the array.

cis15-fall2007-parsons-lectV.1

Arrays review

® A string is an array of characters
e An array is a “regular grouping or ordering”
e A data structure consisting of related elements of the same data
type
e Arrays need:
— Data type
— Name
— Length

cis15-fall2007-parsons-lectV.1

¢ Length can be determined:

— statically — at compile time.
char str1[10];
— dynamically — at run time

char *str2;

e We'll talk about how to do dynamic declaration in the next
lecture.

cis15-fall2007-parsons-lectV.1

/Arrays and memory|

¢ Defining a variable is called “allocating memory” to store that
variable

® Defining an array means allocating memory for a group of bytes,

i.e., assigning a label to the first byte in the group
¢ Individual array elements are indexed
— Starting with 0
- Ending with length — 1

e Indices follow array name, enclosed in square brackets ([])
eg., arr[25]

cis15-fall2007-parsons-lectV.1

(Character array example|

/'l exanpl e: arraysOc. cpp

#i ncl ude <i ostreanr
usi ng nanespace std;

const int MAX = 6;

int main(void) {
char str[MAX] = "ABCDE";
int i;
for (i=0; i<MAX-1; i++) {
cout << str[i] << " ";
}
cout << endl;
} /= end of main() =*/

cis15-fall2007-parsons-lectV.1

Integer array example|

/'l exanple: arraysOi.cpp

#i ncl ude <i ostreanr
usi ng nanespace std;

const int MAX = 6;

int main() {
int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
int i;
for (i=0; i<MAX; i++) {
cout << arrf[i] << " ";
}

cout << endl;
} /' end of main() =*/

cis15-fall2007-parsons-lectV.1

Pointers overview|

¢ A pointer contains the address of an element
e Allows one to access the element “indirectly”
e &is a unary operator that gives address of its argument

e » is a unary operator that fetches contents of its argument (i.e.,
its argument is an address)

¢ Note that & and * bind more tightly than arithmetic operators

® You can print the value of a pointer using cout with the pointer
or using C-style printing (e.g., pri nt f ()) and the formatting
character %p

cis15-fall2007-parsons-lectV.1 10

\Pointers and memory‘

e Variables that contain memory addresses as their values

® Other data types we've learned about use direct addressing
e Pointers facilitate indirect addressing

® Declaring pointers:

— Pointers indirectly address memory where data of the types
we’ve already discussed is stored (e.g., i nt, char,f| oat,
etc.—even classes)

— Declaration uses asterisks (*) to indicate a pointer to a
memory location storing a particular data type

e Example:

int *count;
float ravg;

cis15-fall2007-parsons-lectV.1

® Ampersand & is used to get the address of a variable

e Example:

int count = 12;
int *countPtr = &count;

e &ount returns the address of count and stores it in the pointer
variable count Pt r

e A picture:
count Ptr count
DR
cis15-fall2007-parsons-lectV.1 12

Here’s another example:

int i =3, | =-99;
int count = 12;
int *countPtr = &count;

and here’s what the memory looks like:

| variable name | memory location value
count Oxbftff4f0 12
i Oxbffff4f4 3
j Oxbffff4f8 -99
count Ptr Oxbf£ff600 | Oxbffff4£0

cis15-fall2007-parsons-lectV.1

'Address arithmetic|

® An array is some number of contiguous memory locations

¢ An array definition is really a pointer to the starting memory
location of the array

¢ And pointers are really (big) integers

® So you can perform integer arithmetic on them

® e.g., +1 increments a pointer, -1 decrements

® You can use this to move from one memory location to another

e Often this is used to access one array element after another

/'l pointers0.cpp

#i ncl ude <i ostreanm>
usi ng nanmespace std;

int main() {
int i, *j, arr[5];
for (1 i=0; i<5; i++) {

arr[i] =1i;

}

cout << "arr=" << arr << endl;

cout << endl;

cis15-fall2007-parsons-lectV.1

cis15-fall2007-parsons-lectV.1 14
for (1=0; i<5; i++) {
cout << "i=" << i << " arrli]=" << arrli];
cout << " &arr[i]=" << &arr[i] << endl;

}

}

cout << endl;

j = &arr[0];
cout << "j=" << j;
cout << " #j=" << K

cout << endl << endl;;

j
cout << "after adding 1 to j: j=" <<j;
cout << " xj=" << *j << endl;

cis15-fall2007-parsons-lectV.1 16

The output is:
arr=0xbf fff864

i=0 arr[i]=0 &arr[i]=0xbffff864
i=1 arr[i]=1 &arr[i]=0xbffff868
i=2 arr[i]=2 &arr[i]=0xbffff86c
i=3 arr[i]=3 &arr[i]=0xbffff870
i=4 arr[i]=4 &arr[i]=0xbffff874

=0xbffff 864 *j=0

—

after adding 1 to j: j=0xbffff868 *j=1

NOTE that the absolute pointer values can change each time you
run the program! BUT the relative values will stay the same.

cis15-fall2007-parsons-lectV.1

/'l pointersl.cpp

#i ncl ude <i ostrean»
usi ng nanespace std;

int main() {

int x, vy; /] declare two ints

int *px; /] declare a pointer to an int

X = 3; /1l initialize x

px = &X; /'l set px to the value of the address of x; i.
y = *pX; /] set y to the value stored at the address po

/1 to by px; in other words,

printf("x=%l px=% y=%l\n",x, px,y);

cis15-fall2007-parsons-lectV.1

t he val ue of x

18

b

X++; /'l increnent x
printf("x=% px=% y=%\n",x,px,y);

(*px) ++; /1 increment the value stored at the address
/1 pointed to by px

printf("x=% px=% y=%\n",x,px,y);
* pX++; /1 take away the parens
printf("x=% px=% y=%\n",x,px,y);
/'l since px has changed, what does it point to now?
printf("*px=%\n", *px);
}

cis15-fall2007-parsons-lectV.1

and the output is...

step 0: here is what we start wth:
step 1: after increnenting x:
step 2: after increnmenting (*px):
step 3: after increnenting *px:

and *px=3

cis15-fall2007-parsons-lectV.1

px=0xbffff874
px=0xbffff874
px=0xbffff874
px=0xbffff878

y=3
y=3
y=3
y=3

20

., to point

nt ed

and here’s a picture of what’s going on:

step 0: [23 thisistheinitial situation:
xisinitialized to the value 3
i pxisinitialized to point to x

= = isinitialized to the value pointed to by x
0] B porstoty

step 1: px hereis the situation after incrementing x
v
step 2: px hereisthe situation after incrementing (*px),

i.e., the value that px pointsto, in other words, x

step 3: px hereisthe situation after incrementing px
i.e., the POINTER increments, in other words,
it moves to point to the next contiguous itemin

v
x= y= memory, in this case, y

cis15-fall2007-parsons-lectV.1 21

Pointers and references

e Pointers (same as in C):

—int *pmeans “pointer to int”
—-p = & means p gets the address of object i
e References (not in C):
— They are basically aliases — alternative names — for the
values stored at the indicated memory locations,

int n;
int &nn = n;
double arr[10];
double & ast = arr[9];

¢ The difference between them is shown by r ef s. cpp on the class
website.

cis15-fall2007-parsons-lectV.1 22

Arrays of objects|

® You can create arrays of objects.

[+ arrayso.cpp */

#i ncl ude <i ostreanr
usi ng nanespace std;

class Point {
private:
int x, vy;
public:
Point() { }
Point(int x0, int yO) : x(x0), y(y0) { }
void set(int x0, int yo) { x = x0; y =y0; }

void print() const { cout << "(" << x << "," <<y << ") 1,

}s

cis15-fall2007-parsons-lectV.1 23

¢ Each element of the array is an object, and is handled in the
usual way.

int main() {
Point triangle[3];
triangle[0].set(0,0);
triangle[1].set(0,3);
triangle[2].set(3,0);
cout << "here is the triangle: ";
for (int i=0; i<3; i++) {
triangle[i].print();

cout << endl;

cis15-fall2007-parsons-lectV.1 24

Pointers to objects|

® You can also create pointers to objects just as you create pointers
to primitive data types

¢ In the example below, we demonstrate dynamic memory allocation
by declaring a pointer to an array and then LATER declaring the
memory for the array using the new function.

e At the end of the program, we call the del et e function to
de-allocate the memory (it’s not really necessary at the end of a
program, but you might want to use it inside a program to keep
your memory management clean).

e We'll talk more about dynamic memory allocation and memory
management in the next lecture...

cis15-fall2007-parsons-lectV.1 25

¢ Assuming the same definition of poi nt as before.

int main() {
Point *triagain = new Point[3];
assert(triagain !=0);
triagain[0].set(0,0);
triagain[1].set(0,3);
triagain[2].set(3,0);
cout << "tri-ing again: ";
for (int i=0; i<3;, i++) {

triagain[i].print();

}
cout << endl;
del ete[] triagain;

cis15-fall2007-parsons-lectV.1

26

Summary

® This lecture has looked at

— Pointers

- Arrays

— References
and it began to explore the notion of dynamic memory
allocation.

® The next lecture will look at dynamic memory allocation in more
detail.

cis15-fall2007-parsons-lectV.1 27

