RECURSION

e This lecture looks at

— The basics of recursion.
- Some examples of recursive functions.

¢ The textbook doesn’t cover recursion in any detail (the only
material is on pages 96 and 97 in my copy)..

cis15-fall2007-parsons-lectVI.1 2

Recursion

® Recursion is defining something in terms of itself
® There are many examples in nature:

— Seeds in a sunflower

LS

e . ..in mathematics:

— Factorial
— Induction

e ...and in computer graphics:

— Koch snowflake

cis15-fall2007-parsons-lectVI.1

'Koch snowflake

e Starting with a line, then:

1. Divide each line into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment
from step 1 as its base and points outward.

3. Remove the line segment that is the base of the triangle from
step 2.

® Repeat as often as you like.

cis15-fall2007-parsons-lectVI.1 4

e Here are the first four iterations of the Koch snowflake.

Power function/

® Power is defined recursively:

W _ ify==0, ¥=1
| otherwise, XY = x% ¥~

e There are two parts to the definition:

— The base case, what we do when y is zero.
— The recursive case, what we do when y is not zero.

))) e This is the common pattern for all recursive definitions.
® The more iterations, the more snowflaky it looks.

cis15-fall2007-parsons-lectVI.1 5 cis15-fall2007-parsons-lectVI.1

Here it is in C++

/I rl.cpp
#include <iostream>

using namespace std; e Notice that power() calls itself!

int power(int x, int y) { e This seems to be magic, but we’ll see how it is done in a moment.
if (y==0) ¢ You can make recursive calls with any method except main()
return(1);
else (1) e BUT beware of infinite loops!!!
return(x * power(X, y-1)); ® You have to know when and how to stop the recursion — what
} /I end of power() is the stopping condition.
int main() {
cout << "2°3 = " << power(2,3) << endl
}

cis15-fall2007-parsons-lectVI.1 7 cis15-fall2007-parsons-lectVI.1 8

‘Walking through power(2,4) ‘

e Initial call is power(2, 4)

call x|y |return value
1|power(2,4)|2 4|2*power(2,3)
2| power(2,3)|2[3|2*power(2,2)
3| power(2,2)|2(2|2*power(2,1)
4|power(2,1)|2[1|2*power(2,0)
4 power(2,0)/2/0|1

® The first is the original call

e Followed by four recursive calls

cis15-fall2007-parsons-lectVI.1

¢ The computer uses a data structure called a stack to keep track of
what is going on

e Think of a stack like a stack of plates

® You can only take off the top one

® You can only add more plates to the top

e This corresponds to the two basic stack operations:

— push — putting something onto the stack
- pop — taking something off of the stack

e When each recursive call is made, power() is pushed onto the
stack

® When each return is made, the corresponding power() is
popped off of the stack

cis15-fall2007-parsons-lectVI.1 10

Another example: factorial

e factorial is defined recursively:
i [N ==1N=1
© | otherwise, N!'=Nx (N —1)!
(for N > 0)

cis15-fall2007-parsons-lectVI.1

Here it is in C++/

Il r2.cpp
#include <iostream>
using namespace std;

int factorial (int N) {

if (N==1)
return(1);
else

return(N+ factorial(N-1));
} /I end of factorial()

int main() {
cout << "5! = " << factorial(5) << endl;

}

cis15-fall2007-parsons-lectVI.1 12

® Walk through factorial(4)

cis15-fall2007-parsons-lectVI.1

‘Another example‘

/Ir3.cpp
#include <iostream>
using namespace std;

void countDown (int n) {
if (n<=0)
cout << "Blastoff!" << endl;
else {
cout << "Time to launch is
countDown(n - 1);

<< n << " seconds" << endl;

}
} /I end of factorial()

int main() {
countDown(5);

}

cis15-fall2007-parsons-lectVI.1 14

e What does this do?

cis15-fall2007-parsons-lectVI.1

¢ Again countDown has the general structure:

/I base case part

if (<base-case condition>)
return <base-case-value>

/I general case

else
return <recursively computed expression>

e This is common to all recursive functions — the only difference
you'll see is that some functions have two base cases.

cis15-fall2007-parsons-lectVI.1 16

Fibonacci

/I in rd.cpp
int fibonacci (int n) {
if (n == 0{
return O;
}
else
if (n == 1)
return 1;
}
else {
return(fibonacci(n - 1) + fibonacci(n -2));
}

} /I end of fibonacci()

cis15-fall2007-parsons-lectVI.1

e — A tiling where tile sides are successive members of the
Fibonacci sequence.

&

on

3

— A spiral constructed from the above tiling.

cis15-fall2007-parsons-lectVI.1

18

Summary

® This lecture has looked at

— The basic idea of recursion
— A bunch of different examples of recursion

o We will look at recursion more in the next lecture.

cis15-fall2007-parsons-lectVI.1

