
RECURSION

Today

• This lecture looks at

– The basics of recursion.

– Some examples of recursive functions.

• The textbook doesn’t cover recursion in any detail (the only
material is on pages 96 and 97 in my copy)..

cis15-fall2007-parsons-lectVI.1 2

Recursion
• Recursion is defining something in terms of itself

• There are many examples in nature:

– Seeds in a sunflower

• . . . in mathematics:

– Factorial

– Induction

• . . . and in computer graphics:

– Koch snowflake

cis15-fall2007-parsons-lectVI.1 3

Koch snowflake

• Starting with a line, then:

1. Divide each line into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment
from step 1 as its base and points outward.

3. Remove the line segment that is the base of the triangle from
step 2.

• Repeat as often as you like.

cis15-fall2007-parsons-lectVI.1 4

• Here are the first four iterations of the Koch snowflake.

• The more iterations, the more snowflaky it looks.

cis15-fall2007-parsons-lectVI.1 5

Power function

• Power is defined recursively:

xy =















if y == 0, xy = 1
otherwise, xy = x ∗ xy−1

• There are two parts to the definition:

– The base case, what we do when y is zero.

– The recursive case, what we do when y is not zero.

• This is the common pattern for all recursive definitions.

cis15-fall2007-parsons-lectVI.1 6

Here it is in C++

// r1.cpp
#include <iostream>
using namespace std;

int power(int x, int y) {
if (y == 0)

return(1);
else

return(x * power(x, y-1));
} // end of power()

int main() {
cout << "2ˆ3 = " << power(2,3) << endl;

}

cis15-fall2007-parsons-lectVI.1 7

• Notice that power() calls itself!

• This seems to be magic, but we’ll see how it is done in a moment.

• You can make recursive calls with any method except main()

• BUT beware of infinite loops!!!

• You have to know when and how to stop the recursion — what
is the stopping condition.

cis15-fall2007-parsons-lectVI.1 8

Walking through power(2,4)

• Initial call is power(2, 4)

call x y return value

1 power(2,4) 2 4 2 * power(2,3)
2 power(2,3) 2 3 2 * power(2,2)
3 power(2,2) 2 2 2 * power(2,1)
4 power(2,1) 2 1 2 * power(2, 0)
4 power(2,0) 2 0 1

• The first is the original call

• Followed by four recursive calls

cis15-fall2007-parsons-lectVI.1 9

Stacks

• The computer uses a data structure called a stack to keep track of
what is going on

• Think of a stack like a stack of plates

• You can only take off the top one

• You can only add more plates to the top

• This corresponds to the two basic stack operations:

– push— putting something onto the stack

– pop— taking something off of the stack

•When each recursive call is made, power() is pushed onto the
stack

•When each return is made, the corresponding power() is
popped off of the stack

cis15-fall2007-parsons-lectVI.1 10

Another example: factorial

• factorial is defined recursively:

N! =















if N == 1, N! = 1
otherwise, N! = N ∗ (N − 1)!

(for N > 0)

cis15-fall2007-parsons-lectVI.1 11

Here it is in C++

// r2.cpp
#include <iostream>
using namespace std;

int factorial (int N) {
if (N == 1)

return(1);
else

return(N * factorial(N-1));
} // end of factorial()

int main() {
cout << "5! = " << factorial(5) << endl;

}

cis15-fall2007-parsons-lectVI.1 12

•Walk through factorial(4)

cis15-fall2007-parsons-lectVI.1 13

Another example

//r3.cpp
#include <iostream>
using namespace std;

void countDown (int n) {
if (n <= 0)

cout << "Blastoff!" << endl;
else {

cout << "Time to launch is " << n << " seconds" << endl;
countDown(n - 1);

}
} // end of factorial()

int main() {
countDown(5);

}

cis15-fall2007-parsons-lectVI.1 14

•What does this do?

cis15-fall2007-parsons-lectVI.1 15

• Again countDown has the general structure:

// base case part

if (<base-case condition>)
return <base-case-value>

// general case

else
return <recursively computed expression>

• This is common to all recursive functions — the only difference
you’ll see is that some functions have two base cases.

cis15-fall2007-parsons-lectVI.1 16

Fibonacci

// in r4.cpp

int fibonacci (int n) {
if (n == 0){

return 0;
}
else

if (n == 1){
return 1;

}
else {

return(fibonacci(n - 1) + fibonacci(n -2));
}

} // end of fibonacci()

cis15-fall2007-parsons-lectVI.1 17

• – A tiling where tile sides are successive members of the
Fibonacci sequence.

– A spiral constructed from the above tiling.

cis15-fall2007-parsons-lectVI.1 18

Summary

• This lecture has looked at

– The basic idea of recursion

– A bunch of different examples of recursion

•We will look at recursion more in the next lecture.

cis15-fall2007-parsons-lectVI.1 19

