CIS 1.5 Fall 2008 Lab I, Part 2

Instructions

1

2

This is the second part of the first homework/lab assignment for CIS 1.5. Read the first part of the
assignment for complete instructions, due date and submission details.

Before you start

Follow the “How to use CodeBlocks" instructions to create a new project called roombaWorld.

Get a copy of the roombaWorld C++ code from Professor Parsons. If you are in the lab, the you can get
the code directly from him. The code is also on the course website, and is given in Appendix A.

Copy the program into the roombaWorld project.

Make sure you change the comment to include your name.

Compile, Build and Run your program.

(0 points)

Limiting the world

Now, we will make the roombaWorld 11 squares in both directions, so that the x and y values must be between
0 and 10. For each of the exercises below, you will have to repeatedly edit the roombaWorld file, then compile,
build and run it, until it does as described.

e Add error checking in the moveNorth, moveSouth, moveEast, moveWest methods so that roomba does

not go out of the world (in other words so that = and y don't go above 10 or below 0). To do this you will
need to add a check before you increment or decrement = and y.

(1 point)

Wrapping the world around

Now make it so that if roomba moves north off the north side of the world, it appears at the south side.
Write a message to the screen when this happens.

Make sure that your changes do not alter the error checking you just introduced.
(1 point)
Extend your answer to the previous question so that when roomba moves south off the south side of the

world it appears on the north side, when it moves west off the west side of the world it appears on the east
side, and when it moves east off the east side it reappears on the west side.

Write a message to the screen when each of these things occurs.
(1 point)

Leap to the edge

Add a new behavior moveNorthToEdge() that causes roomba to move forward until it gets to the North
edge of the world and then stop.

Add similar behaviors moveSouthToEdge(), moveEastToEdge(), and moveWestToEdge() which move
roomba to the edge of the world in the indicated direction.

e Extend the set of user commands so that the user can tell roomba to move forward until it gets to the edge
of the world. Use the following letters:

Quit the program

move roomba north one step

move roomba south one step

move roomba east one step

move roomba west one step

move roomba north to the edge of the world
move roomba south to the edge of the world
move roomba east to the edge of the world
move roomba west to the edge of the world

Smunzso v s|O

(2 points)

5 Finish up
e Save this last version of the code (the one with the new commands). This version of the project should be
submitted as the second part of your first homework/lab assignment.

This version of the code should contain all of the changes you have made during these exercises — you will
only get credit for the things that | can see you have done. You can use comments to make sure that | see
all these things.

6 Submit Lab 1

e Gather up your final version of the roombaWorld program (remember, just the .cpp and the programs you
wrote for Part 1, and email them to Prof Parsons, as described in the instructions for Part 1.

Appendix A

// An interactive world for roomba to play in.
//

// Simon Parsons

// September 7th 2008

/7

// Include C++ library definitions

#include <iostream>
using namespace std;

/7

// Declare variables

int x; // robot’s x position

int y; // robot’s y position

char c; // user’s input

bool q; // does user want to quit?

//
// Declare methods

void displayPosition()
{
cout << "The robot is at location (";
cout << x;
cout << ", ";
cout << y;
cout << ")\n";

void moveNorth()

{
cout << "moving North...\n";
y=y+1

}

void moveSouth()

{
cout << "moving South...\n";
y=y -1

}

void moveWest()

{
cout << "moving West...\n";
X =x - 1;

void moveEast ()

{
cout << "moving East...\n";
X =x + 1;

/7

// Define main method

int main()

{
x = 0; // Set variables
y=0;
q = false;
displayPosition();

// We keep doing this bit
while (g==false){
// Get input from user

cout << "Which way should the robot move (enter N,S,E,W or Q)7 ";
cin >> c;

cout << "You entered: ";

cout << c;

cout << "\n";

// Depending on what the user entered, move the right way

if (c=="N’) {
moveNorth() ;
displayPosition();
}

if (c=="8") {
moveSouth() ;
displayPosition();
}

if (c=="E’) {
moveEast () ;
displayPosition();
}

if (c=="Ww>) {
moveWest () ;
displayPosition() ;
}

// If the user entered Q, set up so that we finish.

if (e=="Q>) {
q = true;
}
}
cout << "Time to go!" << endl;
return O;
}

