how to use codeblocks

Note that the screen images below were taken on a Mac. Except for the last step (running the program), the steps should be the same when running

CodeBlocks on a Windows or Linux machine.
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step 3: selecting new Project target

When you create a new project, you need to specify it's target. The target

is how you want to run (or "execute") the program you are creating. In the
example here, we are going to run the program from the Mac OSX
Terminal command line (see the last step). If you are running CodeBlocks
in Linux or Windows, you can probably run the program without going to a
terminal window (but we'll update this document with that information
when we have it...).

When you select "File - New - Project", the small window shown on the
right will pop up in front of your main CodeBlocks window. Click on
Console application and then click on the Go button.
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step 4: setting up a console application

After you have selected the console application as the target for your
project, you will see the console wizard, as shown on the right. You can
just click on the Next > button.

Note that you can click on Skip this page next time once you are
comfortable with setting up console applications.
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step 5: specifying the project title and location

Now you need to enter a title for the project and specify the location (i.e.,
folder) where the project will be stored on your computer.

As shown in the screen on the right, in the box labeled Project title:, type
the name of your project. In this example, ours is called roomba.

Then specify the name of the folder where you want the project's files to
be stored. In this example, our folder is called
/Users/sklar/teaching/cis1.5/codeblocks. This means that a folder will be
created called "roomba" that is a subfolder (i.e., underneath) the
/Users/sklar/teaching/cis1.5/codeblocks folder.

Then click on the Next > button.
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step 6: specifying the compiler and debugger sllals

Console application

You can specify the compiler and debugger to use with CodeBlocks. The
compiler is the translator that converts your program from C++ to machine
language. The debugger is a program that can help you figure out where

you might have bugs (i.e., mistakes) in your program.
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step 7: specifying the language sllals

Console application

You can also specify the language that you are writing your program in.
CodeBlocks works with both the C and C++ languages.

For cis1.5, we are using C++. So select C++ on the screen shown to the

right, and then click on the Finish button. E++
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step 9: opening the source code file

Inside the project folder, there are two files, as shown in the screen on the
right. Both are created by CodeBlocks when you create a new project. The
first file in the list is called main.cpp. This is the main source code file.
Note that the file extension is .cpp --- this indicates that it is a C++ source
code file. This is the file we will edit (as instructed below). The second file
in the list is called roomba.cbp. The file extension, .cbp, indicates that
the file is a CodeBlocks Project.

Select main.cpp and click on the Open button (in the lower right corner
off the window, as shown on the right).

step 10: editing the source code file

Now you should see the source code, like we typed in during class,
appear in the edit section of the CodeBlocks main window. As shown in
the screen on the right, this is in the middle of the righthand side of the
CodeBlocks main window.

Note that the code is written in several colors. This feature is called
syntax highlighting. It is helpful. Punctuation marks are highlighted in
red. C++ keywords are highlighted in blue. Pre-processor commands
(we'll discuss these later) are highlighted in green. Comments are
highlighted in grey. Identifiers (like names of variables and methods) are
highlighted in black.

step 11: saving the source code file

When you are done editing the file (and also periodically while you are
editing it), you should save your work. Select File and then Save, as
shown on the right.
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step 12: compiling the source code file
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step 14: building the application

After your program compiles correctly (with no errors and hopefully no
warnings), you need to build an application from the compiler's output.
This just means that you are converting the compiler's translated version
of your source code into a file that your computer will know how to
execute (i.e., run).

Do this by selecting Build and then Build (again) from the menus, as
shown on the right.
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step 15: checking the build messages

Just as you checked to make sure that the compiler ran without errors, you
also need to make sure that the builder ran without errors. The Build log
section of the CodeBlocks window will indicate if there are any errors, as
shown on the right. This is the same section of the window where the
compiler writes its messages.

We don't have any builder errors in our example. If you did have errors,
you would need to go back to the edit step (above), fix your errors, then
save and compile again; then build again.

If the builder runs without errors, then you are ready to run the program
and test if it does what you want it to do.
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step 16: running the program

In Mac OS X, you will need to run the program outside of CodeBlocks,
using the Mac Terminal application. This application is inside the top-level
Applications folder, which you can locate using the Finder. Terminal is
inside the Utilities folder that is inside the Applications folder. Double-
click on the Terminal icon, and a window will open that looks like the one
on the right.

You will need to use some command-line commands inside Terminal.
The first thing you need to do is go to ("open") the folder where your
program is saved. Do this by entering the letters cd, followed by the
project's folder name (see step 5 above). In our example, this would be:

$ cd
/Users/sklar/teaching/cisl.5/codeblocks/roomba
followed by the enter (or return) key.

Note that the $ is called the "prompt". It is an indication that the Terminal
is waiting for you to enter a command.

Note that the "cd" and the folder name need to be entered on the same
line, even though they are shown on two lines above (that's just because
the screen isn't wide enough to show them on the same line). You only hit
"enter" after you've entered both "cd" and the full path name.

Once you have entered the "cd" command, you should be in the folder
where your project files are stored. You can check this by entering the Is
command (followed by hitting the "enter" key). You should see a list of
files, including roomba (with no extension). This is our executable
program file.

To run the program, at the $ prompt, enter ./ followed by the name of the
executable program. In this example, you enter:
$ ./roomba

The output of running the program is shown.
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