how to use codeblocks

Note that the screen images below were taken on a Mac. Except for the last step (running the program), the steps should be the same when running

CodeBlocks on a Windows or Linux machine.

step 1: starting up CodeBlocks e Code::Blocks v1.0
=3 R
The picture on the right shows the screen when you first start up :
CodeBlocks. It has a number of different parts to it. Depending on what Build target -
you are doing with CodeBlocks, different parts of the window will be filled ﬁ‘” {.} BfRIR: R 5
. en files list
in with information. These will be explained below, as they come up. _ P - start here b
Opened Files
Note that CodeBlocks, like most IDEs (Integrated Development CodeBlodk
Environments), has many, many different things you can do with it, and ode::Blocks l
hence many different menu options. Don't worry about all of them --- only B e e e s lasom 10
worry about the ones you need to use. Those are outlined in the steps b detmaetiocray. gl
below.
Management = i — 1
—— _ ik W Create a new project :
OWorkspace c L3
Messages
A cad X} Code:Blocks Debug | 4 Search results | €% Build log i
Welcome to Code::Blocks! i
step 2: opening a Project " @ codeBlocks [JFI Edit View Search Project Build Debug wxSmith Tools Settings
©066 = TV oty file Q3N
Programs in CodeBlocks (and most IDEs) are organized into entities called = | = 1~ [4 545, %0 [T
projects. The first thing you need to do when you start up CodeBlocks is | Open default workspace Build target t
open a project. This could be an existing project, or a new project. In the 4 e : FlE
i i bap niy ustom
example here, we will open a new project. T == , | From user template | T
.) i = Opened Files. |7
As shown in the screen on the right, from the File menu, select New and |
then Project. il Save as...
Save all files i #s

Management]
Projects | Symbo 1
() Workspace

Welcome to Code::Blocks!

Save workspace
Save workspace as...
Close workspace

€3 Close file
Close all files
Close project

BW
13w

Code::Blocks _L

Fhe open source. cross-platfornt IDE

K hapAvwm.codeblocks.org

€ Build log

step 3: selecting new Project target

When you create a new project, you need to specify it's target. The target

is how you want to run (or "execute") the program you are creating. In the
example here, we are going to run the program from the Mac OSX
Terminal command line (see the last step). If you are running CodeBlocks
in Linux or Windows, you can probably run the program without going to a
terminal window (but we'll update this document with that information
when we have it...).

When you select "File - New - Project", the small window shown on the
right will pop up in front of your main CodeBlocks window. Click on
Console application and then click on the Go button.

" & Grab File Edithdnw Help

|-—=

EFp@(00C

Open files list
= Opened Files

Management

Projects Syn
OWurkspa(e

@ = v\ (=(Calculatir
Start here - Code::Blocks v1.0
R
Build target
New from template
€
I~
ancel
Projects Build targets Files Custom User templates
categories
Gl ey
L‘@ (= A (=8
Code::Blocks plugin D application GLFW project Irrlicht project OpenGL project
- ‘71 GLUT
Ly ‘ =N @
Console application Empty project GLUT project Ogre project QT4 project
je Ic
)
€ |3
ds mar n red Il
iy e left
n the ma I filter }

step 4: setting up a console application

After you have selected the console application as the target for your
project, you will see the console wizard, as shown on the right. You can
just click on the Next > button.

Note that you can click on Skip this page next time once you are
comfortable with setting up console applications.

| C{:’. Grab File Edithduw Help

(=

=i FEY Ty
Open files list

E= Opened Files

Management

Projects
OWorkspace

= | (Calculatin

Start here - Code::Blocks v1.0

|

Console application

step 5: specifying the project title and location

Now you need to enter a title for the project and specify the location (i.e.,
folder) where the project will be stored on your computer.

As shown in the screen on the right, in the box labeled Project title:, type
the name of your project. In this example, ours is called roomba.

Then specify the name of the folder where you want the project's files to
be stored. In this example, our folder is called
/Users/sklar/teaching/cis1.5/codeblocks. This means that a folder will be
created called "roomba" that is a subfolder (i.e., underneath) the
/Users/sklar/teaching/cis1.5/codeblocks folder.

Then click on the Next > button.

Console application

’roject title
roomba

older to create
JUsers/sklar/teaching/cis1.5 fcodeblocks/

Project filename
roomba

sulting T
/Users/sklar/teaching/cis1.5/codeblocks/roomba/roor

step 6: specifying the compiler and debugger sllals

Console application

You can specify the compiler and debugger to use with CodeBlocks. The
compiler is the translator that converts your program from C++ to machine
language. The debugger is a program that can help you figure out where

you might have bugs (i.e., mistakes) in your program.

& Console

Use the default values for these. Don't worry about changing them. And for

¥ Create "Debug" configuration: Deb

now, you don't really need to worry about what they are. f ! jor: Debug
So, when you see the screen shown on the right, you just need to click on — e
the Next > button. Output dir.: in/Debug/

Objects output dir.: obj/Debug/

V/ Create "Release" configuration: Release
ele
Qutput d bin /Release/
Objects output dir.: obj/Release/

step 7: specifying the language sllals

Console application

You can also specify the language that you are writing your program in.
CodeBlocks works with both the C and C++ languages.

For cis1.5, we are using C++. So select C++ on the screen shown to the

right, and then click on the Finish button. E++
Finis 11

step 8: selecting the project Open file
Now you have created the project. CodeBlocks creates a main source Enable: = All files (*) =
code for you when it creates the new project. So now you have to open e — - .
that source code file. First, you have to select the project folder where the = R ES IO v
source code file is stored. s - . T :

% Network = helloworld I |e] main.cpp
Select File and then Open, and you will see a small window pop up in) Macintosh HD L roomba b M roomba.cbp
front of the main CodeBlocks window, as shown on the right. Highlight the
project folder; the one we created here is called roomba. (i Desktop

A sklar

oA Applications

-'I Dacuments

[y Movies

& Music

| Pictures

OPEN_R_SDK

New Folder Cancel

B

step 9: opening the source code file

Inside the project folder, there are two files, as shown in the screen on the
right. Both are created by CodeBlocks when you create a new project. The
first file in the list is called main.cpp. This is the main source code file.
Note that the file extension is .cpp --- this indicates that it is a C++ source
code file. This is the file we will edit (as instructed below). The second file
in the list is called roomba.cbp. The file extension, .cbp, indicates that
the file is a CodeBlocks Project.

Select main.cpp and click on the Open button (in the lower right corner
off the window, as shown on the right).

step 10: editing the source code file

Now you should see the source code, like we typed in during class,
appear in the edit section of the CodeBlocks main window. As shown in
the screen on the right, this is in the middle of the righthand side of the
CodeBlocks main window.

Note that the code is written in several colors. This feature is called
syntax highlighting. It is helpful. Punctuation marks are highlighted in
red. C++ keywords are highlighted in blue. Pre-processor commands
(we'll discuss these later) are highlighted in green. Comments are
highlighted in grey. Identifiers (like names of variables and methods) are
highlighted in black.

step 11: saving the source code file

When you are done editing the file (and also periodically while you are
editing it), you should save your work. Select File and then Save, as
shown on the right.

Open file
Enable: = All files (*) ¥
f = | [# roomba &
% Network o) main.cpp
e f #include <iostream:
| Macintosh HD M roomba.cbp
— N .
int main{)
m Desktop stdzcout << "Hello
AN cklar world!" << std::endl;
. g return 0;
oA Applications i }
-'i Dacuments
[ty Movies Kind: Document
& Music Size: 4 KB
-l Created: 2/5/07
[} Pictures Modified: 2/5/07
OPEN_R_SDK - -
Y«
New Folder ancel
4
slalls main.cpp [roomba] - Code::Blocks v1.0
| R
BT R
Open files list ining 4 b x
v [Opened Files 1 ’
: z #include <iostreans
! main.cpp 3 using namespace std; 1
4
5
&
7 int x:
& int y;
9
18
11
12 Hint display() {
13 cout << "the roomba iz at location ('
14 cout << x;
15 cout << *,";
o . 15 cout << ¥;
Management | e ¥
Projects Syl Sy = I
v OWorkspa:e =
M
v %F roomba L
» = Sources Al Cods Code cks Deb 4, Search re £ Build log 4 r
fUsers/sklar/teaching)/cis .5 /codeblocks jraomba/mai. default Line 58, Column 1 Insert Modified Read/Write
§ E:’. CodeBlocks Il Edit View Search Project Build Debug wxSmith Tools Plugins Settings
& a6 New p - Code::Blocks v1.0
Eﬂﬁ:i‘:‘! = Open #O
. Open default workspace | A
© P € [E | Bl Recent projects »
B T2y (T Recent files > |
Open iles Jst Import project > 4 bx
v [Opened Files £
! main.cpp S‘WE %5 d;
4 Save as...
Save all files fHs
Save project as...
Save project as user-template E
Save all projects
a i at location {';
Save workspace
= - Save workspace as...
Management | Close workspace 3
v
Frojects | €3 Close file 2w | v
¥ olwmkm‘“e Close all files oW | =
v "H roomba Close project . Tl
» B Sources Close all projects | i ARSI & tuild log
= Print
Export »
Properties
@) Quit #Q

Save the active file defanlt J Line 58, Column 1 Insert Modified Read/Write

step 12: compiling the source code file

E E" CodeBlocks File Edit View Search Prnjectm wxSmith Tools Plugins Settings

‘@006 *main.cpp [roombal = € Build %ro |
In order to create a file that you can run from your source code file, you EIFESER S HES W Y :7
. . . un F10
need to perform two steps. The first step is to compile the source code, . - £ il arid run il
and the second step is to build an "executable" file. D P BEE | buld arget: (Debug 2] 5 Rebuild %FLL
UER R AR w v A < A . Clean 1
. . R - Open files list 5
To perform the first step, select Build and then Compile current file from ":"E:’D';md = “main.cpp e 4 x
the menus, as shown. £ main.cpp 3 ing namcepace sy Reouild workspace [
4 Clean workspace
; d
T Ent xi
2 it Errors [2
ﬁ Select target... »>
12 Glint display() {
13 cout == "the roomba
14 cout << x;
15 cout == ",";
- N 16 cout == y;
Management T - '
projeccs (Y A) Tl
v OWurkspa(e =
v 'I roomba Messagss,
» B Sources A Code s | X} Code; 8 b rch £ Build log 4
{Users/sklar /teaching/cis1.5/codeblocks/roombajmai default Line 58, Column 1 Insert Modified Read/Write
step 13: checking the compiler messages DO E R p gl e teor e Rio ke b
R
T
When the compiler runs, messages will show up in the section of the :
CodeBlocks main window that is labeled Build log. As shown on the right, Build target: | D o
that is in the lower right corner of the CodeBlocks main window. SRR XY i A
Open files list = 4 b x
. . [E= Opened Files e
In our example, we have no error messages from the compiler. Yippee! N oalnicpp ¥
(You know this because the end of the message says: 0 errors, 0 B int peind) ¢
. R =P
warnings). En v i;
52 display(s
53 moveForuard(};
But normally, at least the first time you try to compile, you will probably % Rty
have messages appearing there. You will need to read through each =z riipenall
message and correct your source code file by editing it, saving it again 2 ity
and compiling it again--- until there are no more errors in the Build Log . e priri
message window. Management 2 i ‘
Projects Symbe &1 = | |3
v OWorkspa:e =
v %8 roomba Messages
- Nr— € Build log | §* Euild me € Debugge ak L
Camauling: maie. cop
P LI s 8 i, 1
JUsers/sklar/teaching/cis1.5 /codeblocks /roomba/mai default Line 62, Column 14 Insert Read {Write

step 14: building the application

After your program compiles correctly (with no errors and hopefully no
warnings), you need to build an application from the compiler's output.
This just means that you are converting the compiler's translated version
of your source code into a file that your computer will know how to
execute (i.e., run).

Do this by selecting Build and then Build (again) from the menus, as
shown on the right.

r

B
666 main.cpp [roombal - » Build 39
iR~k | B G & Compile current file 1+ 3F9
B Run 3¥F10 [
T . - Build and run F9 |
= | Build target: Debu: 4] o
CLA = - - s L [Rebuild 3#F11
Glrzl :IE {I} By A XN I = . Clean I
14
penmes b main.cpp 4 b x
v [Opened Files 46 Build workspace
47 i
main.cpp il Rebuild workspace
49 Clint main() { Clean workspace
[X = B3
51 ¥ =1;
652 displayi);
53 neveForuard(
5¢ moveForuard(); Errors »
5 display(}; Select target... >
6 nerveBackward) ;
57 display();
58 moveLefti);
£9 display();
&8 teveR1ghE ()3
- W L display();
62 return ;]

Management = " ')
Projects | Syl < I :54 S
v OWnrkspace =

Messages
v %F roomba 2
» B2 Sources £ Build log | Build m £ De 4 b
Conpiling: matncon
Progess temunoted wikh stotus § (@ munctes, 1 seandz)
4 errars, @ wornings
Build current project default Line 62, Column 14 Insert Read [Write

E’{ CodeBlocks File Edit View Search Project A Debug wxSmith Tools Plugins Settings

step 15: checking the build messages

Just as you checked to make sure that the compiler ran without errors, you
also need to make sure that the builder ran without errors. The Build log
section of the CodeBlocks window will indicate if there are any errors, as
shown on the right. This is the same section of the window where the
compiler writes its messages.

We don't have any builder errors in our example. If you did have errors,
you would need to go back to the edit step (above), fix your errors, then
save and compile again; then build again.

If the builder runs without errors, then you are ready to run the program
and test if it does what you want it to do.

Open files list
v [Opened Files

main.cpp

Management
Projects
v (O Workspace
v %F roomba
» = Sources

fUsers/sklar/teaching/cis1.5/codeblocks /roomba/mai default

main.cpp
46
47
45
49 int main() |
58 % =8;
51 y=1;
52 display();
53 moveForward:);
5e noveForuard();
55 display();
56 noveBackward () ;
57 display();
58 moveLeft ()
59 display();
] noveR1ight () ;
| 6L display();
62 return 1]
63 T
4 bk &
Messages
&) Buildlog | [~}
A ——
T —
witn skotus @ (3 manskes, 1 secants)

Line 62, Column 14

Insert Read/Write

step 16: running the program

In Mac OS X, you will need to run the program outside of CodeBlocks,
using the Mac Terminal application. This application is inside the top-level
Applications folder, which you can locate using the Finder. Terminal is
inside the Utilities folder that is inside the Applications folder. Double-
click on the Terminal icon, and a window will open that looks like the one
on the right.

You will need to use some command-line commands inside Terminal.
The first thing you need to do is go to ("open") the folder where your
program is saved. Do this by entering the letters cd, followed by the
project's folder name (see step 5 above). In our example, this would be:

$ cd
/Users/sklar/teaching/cisl.5/codeblocks/roomba
followed by the enter (or return) key.

Note that the $ is called the "prompt". It is an indication that the Terminal
is waiting for you to enter a command.

Note that the "cd" and the folder name need to be entered on the same
line, even though they are shown on two lines above (that's just because
the screen isn't wide enough to show them on the same line). You only hit
"enter" after you've entered both "cd" and the full path name.

Once you have entered the "cd" command, you should be in the folder
where your project files are stored. You can check this by entering the Is
command (followed by hitting the "enter" key). You should see a list of
files, including roomba (with no extension). This is our executable
program file.

To run the program, at the $ prompt, enter ./ followed by the name of the
executable program. In this example, you enter:
$./roomba

The output of running the program is shown.

$ ls -lafFc

g

o

main.cpp

obj/

roomba*
roomba.cbp
roomba. depend

$./roomba

the roomba is at

moving forward. ..
moving forward. ..

the roomba is at

moving backward. .

the roomba is at
moving left...
the roomba is at
moving right...
the roomba is at
s []

location

location
location
location

location

Terminal — bash — 80x25

@,12

(0,3
(,2)
1,2
(0,23

