
LOGICAL OPERATIONS, CONTROL STRUCTURES

Today

• The if statement

• Relational operators

• Logical operators

• Truth tables

• The if-else statement.

• The while statement

cis1.5-fall2008-parsons-lectII.1 2

Why we need control structures

• So far, all we have seen is how to make a program do a sequence
of things.

– goNorth()

– goEast()

– goNorth()

• There is more to life than this!

•We want to be able to make a program:

– Choose between doing different things

– Do the same thing several times

• C++ gives us control structureswhich allow us to do these things.

cis1.5-fall2008-parsons-lectII.1 3

roombaGame

cis1.5-fall2008-parsons-lectII.1 4

The if branching statement

• roombaGame used several new features of C++.

• Perhaps the simplest is the if statement.

• To tell when the roomba is at the dirt, we need to do:

if(x == dirtX) {
cout << "The roomba found the dirt" << endl;
}

• Let’s look at it in a bit more detail.

cis1.5-fall2008-parsons-lectII.1 5

The if branching statement

• The if is a conditional

– Means the computer makes a choice

• It is also a control structure

• General structure:

if(<something that is true or false>)
{

<some instructions>

}

cis1.5-fall2008-parsons-lectII.1 6

Boolean expressions

• Boolean expressions are things that are true or false.

• Boolean variables: true (1) or false (0)

• Logical operators:

! not
&& and
|| or

cis1.5-fall2008-parsons-lectII.1 7

• Example:

boolean a, b;
x = 1; // true
y = 0; // false

if(x && y){
cout << "This is false\n";

}

if(x || y){
cout << "This is true\n";

}

cis1.5-fall2008-parsons-lectII.1 8

Truth tables

a !a
false true
true false

a b a && b
true true true
true false false
false true false
false false false

a b a || b
true true true
true false true
false true true
false false false

cis1.5-fall2008-parsons-lectII.1 9

Relational operators

== equality
!= inequality
> greater than
< less than

>= greater than or equal to
<= Less than or equal to

example:

int x, y;
x = -5;
y = 7;

some truths:
(x < y) true
(x == y) false
(x >= y) false

cis1.5-fall2008-parsons-lectII.1 10

The if branching statement (again)

// Is the robot still in the world?

if ((x < 10) && (y < 10))
{

cout << "The roomba is on the grid\n";
}

cis1.5-fall2008-parsons-lectII.1 11

• And the actual code from the roombaGame:

if((x == dirtX)&&(y == dirtY))
{

cout << "You found the dirt\n";
}

cis1.5-fall2008-parsons-lectII.1 12

The if-else branching statement

• A neater way of doing some branching.

• This:

if((x == dirtX)&&(y == dirtY)){
cout << "You found the dirt\n";

}

if((x != dirtX)||(y != dirtY))){
cout << "You missed the dirt\n";

}

cis1.5-fall2008-parsons-lectII.1 13

• Is a bit neater as:

if((x == dirtX)&&(y == dirtY))
{

cout << "You found the dirt\n";
}
else
{

cout << "You missed the dirt\n";
}

cis1.5-fall2008-parsons-lectII.1 14

• General structure:

if(<something that is true or false>)
{

<some instructions>

}
else
{

<alternative instructions>
}

cis1.5-fall2008-parsons-lectII.1 15

the while looping statement.

• while allows us to repeat things:

// Go north 4 times

count = 0;

while (count <= 4)
{
goNorth();

}

cis1.5-fall2008-parsons-lectII.1 16

• General structure:

while(<something that is true or false>)
{

<some instructions>

}

• This structure looks a lot like if

cis1.5-fall2008-parsons-lectII.1 17

Summary

•We covered some of the basic control structures:

– if, while

• Along the way we looked at boolean expressions and relational
operators as well.

• Now it is time to read Chapter 2 of the textbook.

cis1.5-fall2008-parsons-lectII.1 18

