
FUNCTIONS

Today

•What are functions and why to use them

– I will use the terms “function” and “method” interchangeably.

• Library and programmer-defined functions

• Parameters and return values

• Reading: textbook Chapter 4

cis1.5-fall2008-parsons-lectIII.2 2

Advantages of functions

•Modularity

–We can divide up a program into small, understandable
pieces (kind of like steps in a recipe)

– This makes the program easier to read

– This makes the program easier to debug.

•Write once, use many times

– If we have a task that will be performed many times, we only
have to define a function once; then we can call (or invoke) the
function as many times as we need it

– Also, we can use parameters (or arguments) to use the function
to perform the same task on or with different data values

cis1.5-fall2008-parsons-lectIII.2 3

Library functions

•We have already talked about built-in, or library, functions

– These are functions that come with the C++ language

•We have used the iostream C++ library:

– iostream.cout

– iostream.cin

•We have used the fstream C++ library:

– ifstream.open

– ifstream.close

– ofstream.open

– ofstream.close

cis1.5-fall2008-parsons-lectIII.2 4

•We have also mentioned the math C library:

– sqrt

– pow

•We have also mentioned the stdlib C library:

– srand

– rand

cis1.5-fall2008-parsons-lectIII.2 5

How functions work

• Functions must be defined (or “declared”) and then they can be
called (or “invoked”)

• In the file that contains a program, a function must be declared
before it can be invoked.

• You can declare a function “header” (see the next slide) first and
then later list the function definition; or you can simply put the
function definition in the file before the function is called...

cis1.5-fall2008-parsons-lectIII.2 6

A first example

#include <iostream>
using namespace std;

void sayHello() // define function
{
cout << "hello\n";
return 0;

}

int main()
{

sayHello(); // call function
return 0;

}

cis1.5-fall2008-parsons-lectIII.2 7

A second example

#include <iostream>
using namespace std;

void sayHello(); // function header only

int main()
{

sayHello(); // call function
return 0;

}

void sayHello() // define function
{

cout << "hello\n";
return 0;

}

cis1.5-fall2008-parsons-lectIII.2 8

Components of a function definition

• header

– Data type or void

– Identifier

– Argument list— contains formal parameters (also sometimes
called dummy parameters)

• body

– Starts with {

– Contains statements that execute the task(s) of the function

– Uses a return statement to return a value corresponding to
the function’s data type (unless the function is void, in which
case there is no return statement or return value)

– Ends with }

cis1.5-fall2008-parsons-lectIII.2 9

Function parameters

• Call by value: this means that when a function is called, the value
of any function parameters are transferred to the inside of the
function and used in there.

• The name of the dummy parameter is what is used inside the
function, and its initial value is set to the value of the argument
that is used when the function is called.

cis1.5-fall2008-parsons-lectIII.2 10

#include <iostream>
using namespace std;

void sayHello(int n) // n is a dummy parameter
{
int i;
for (i=0; i<n; i++)
{

cout << "hello\n";
return 0;

}
}

int main()
{

sayHello(3); // 3 is the value of the argument
return 0;

}

cis1.5-fall2008-parsons-lectIII.2 11

•When the example runs, the dummy parameter n inside the
function sayHello will be set to the value 3, because that is the
value of the argument when the function is called from the main
program

cis1.5-fall2008-parsons-lectIII.2 12

Programmer-defined functions

• As in the previous example, you can define your own functions.

• You are not limited just to those functions already defined in the
C++ language!

• Now the real fun begins!

• Of course, we have already created functions in the first
homework, but maybe you didn’t know exactly what you were
doing . . .

cis1.5-fall2008-parsons-lectIII.2 13

Local variables

• So far, most of the variables we have declared have been called
global.

• This is because we declared them outside of the main() or any
other function.

• But actually, you can declare variables locally, within the body of
a function, and this is more efficient than declaring variables
globally.

• The reason has to do with memory allocation, i.e., how much
memory the computer uses while your program is running.

•When a function runs, the program allocates memory for that
function; when the function finishes, the program releases that
memory so that it can be used again for something else.

cis1.5-fall2008-parsons-lectIII.2 14

• So, local variables are only used inside the function, and they
“go away” when the function exits.

• This is why return values are handy—because you can send a
value from the function back to the part of the program that
called it; and that value does not go away when the function
finishes.

•Memory for global variables is allocated when the program
starts, and the memory is not released until the whole program
finishes; so it is better to use local variables for storing values
that you only need to use some of the time that a program is
running.

cis1.5-fall2008-parsons-lectIII.2 15

Return values

• As in the previous slide, return values are good because they are a
way of sending a value from inside a function back to the part of
a program that called that function.

• Up until now, we have written functions that have a single
return statement, typically return 0

• (Which means that the return value is 0).

• You can actually write a function that has multiple return
statments if the function contains branching statements.

cis1.5-fall2008-parsons-lectIII.2 16

Example

int sign(double x)
{

if (x == 0)
{
return 0;

}
else if (x > 0)
{
return 1;

}
else // x < 0
{
return -1;

}
}

cis1.5-fall2008-parsons-lectIII.2 17

Example

• This example returns:

– 0 if the function argument is equal to zero,

– 1 if the function argument is positive, and

– −1 if the function argument is negative

cis1.5-fall2008-parsons-lectIII.2 18

Multiple function parameters

• You can write functions that have more than one parameter.

• The parameters can be of any data type.

• The parameters can even be different data types.

cis1.5-fall2008-parsons-lectIII.2 19

First example

int add(int A, int B)
{

int sum;
sum = A + B;
return sum;

}

cis1.5-fall2008-parsons-lectIII.2 20

Second example

int doMath(int A, int B, char op)
{
int result;
if (op==’+’)
{
result = A + B;

}
else if (op==’-’)
{
result = A - B;

}
else if (op==’*’)
{
result = A * B;

}
return result;

} // end of doMath()

cis1.5-fall2008-parsons-lectIII.2 21

Summary

• This lecture has introduced functions.

•We briefly recapped library functions.

• Then considered user-defined functions.

• In our consideration of user-defined fucntions, we looked at:

– Parameters.

– Local variables

– Return values

cis1.5-fall2008-parsons-lectIII.2 22

