

 Arrays are commonly handled using for loops. Arrays are commonly handled using for loops. Thus, to print out the array age, we might use: for (counter = 0; counter < 8; counter++) { cout << age[counter] << " "; } This will take each element of age in turn and send it to cout. Note that the maximum value of the subscript counter is 7. This is because although age is 8 elements long, the subscript of the first element is 0. In computer science we start counting at 0. In the age[10] = {5, 10, 15, 20, 25, 30} then cout << age[0] << end1; cout << age[0] <<	Handling arrays	
 Thus, to print out the array age, we might use: for (counter = 0; counter < 8; counter++) { cout << age[counter] << * *; } This will take each element of age in turn and send it to cout. Note that maximum value of the subscript counter is 7. This is because although age is 8 elements long, the subscript of the first element is 0. In computer science toe start counting at 0. at affittem prove ketV1 If instead we initialised with: int age[10] = {5, 10, 15, 20, 25, 30} then cout << age[0] << end]; would produce: 5 0		
<pre>\$1.5_6112008-parsons-kettV1</pre>	 Thus, to print out the array age, we might use: for(counter = 0; counter < 8; counter++) { cout << age[counter] << " "; } This will take each element of age in turn and send it to cout. Note that the maximum value of the subscript counter is 7. This is because although age is 8 elements long, the subscript of the first element is 0. 	 value of the subscript of an array. If you <i>overflow</i> an array, for example by doing: age[10] = 30; this will not generate an error. However, it may cause your program to crash in an unexpected
<pre>int age[10] = {5, 10, 15, 20, 25, 30} then cout << age[0] << endl; cout << age[6] << endl; would produce: 5 0 since any values we do not explicitly assign in the initialisation</pre> • Declaring: char sentence[30] = {'H', 'e', 'l', 'l', 'o'} would set all elements of sentence after the 'o' to ' '.		
	is1.5-fall2008-parsons-lectIV.1 7	cis1.5-fall2008-parsons-lectIV.1 8

```
• For example:
                                                                                                 int sum
                                                                                                                = 203i
                                                                                                 int count = 20i
  • In this code:
                                                                                                 double average;
      for(counter = 0; counter < 5; counter++)
                                                                                                 average = sum/count;
                                                                                                 cout << average;
            age[counter] = (int)number[counter];
                                                                                               will output 10, since the division is integer division, and so will
                                                                                               generate an integer answer.
    We cast a double into an int, losing information (the decimal
                                                                                             • Altering the division to
    part).
                                                                                               average = ((double)sum)/count;
  • We can also cast to gain information.
                                                                                               will temporarily make sum a double, and so the division will be
                                                                                              a double divided by an integer, which will give a decimal
                                                                                              answer that can be assigned to average.
cis1.5-fall2008-parsons-lectIV.1
                                                                 11
                                                                                           cis1.5-fall2008-parsons-lectIV.1
                                                                                                                                                            12
                                                                                                                       Casting
                                                                                             • Note that it is safe to assign the elements of age to number
                                                                                              because number contains doubles, and we can use a double to
  • Often, when handling arrays, we want to use the same subscript
                                                                                              hold an integer.
    to access two or more arrays.
                                                                                             • However, if we do:
  • For example:
                                                                                                  for(counter = 0; counter < 5; counter++)
      for(counter = 0; counter < 5; counter++)
                                                                                                       age[counter] = number[counter];
           number[counter] = 2 * age[counter];
                                                                                              We will get unpredicatble results because there is not enough
                                                                                               room in a int to hold all the information in a double.
  • This replaces each element of number with double the
    corresponding element of age
                                                                                             • What we can do is to deliberately exclude the decimal part of
                                                                                               number.
                                                                                             • We do this using an operation called casting.
cis1.5-fall2008-parsons-lectIV.1
                                                                                           cis1.5-fall2008-parsons-lectIV.1
                                                                                                                                                            10
```

Manipulating subscripts	Using arrays
• The subscript that we use to identify elements of an array is also just an integer.	• The homework will explore the use of arrays in a biomedical context.
• So we can use arithmetic expressions as subscripts, <i>so long as they eveluate to integers</i> .	• Lots of recent biomedical research has concentrated on analysing genetic information — information encoded in DNA.
• For example	• You can think of DNA as being long sequences of letters drawn from an alphabet of four letters, C, A, T and G.
<pre>cout << age[2+1]; cout << age[counter - 2];</pre>	• Clearly we can represent such sequences as arrays of characters:
cout << age[age[0]];	char dna[7] = {'a', 't', 'a', 't', 'a', 'g', 'c'}
.5-fall2008-parsons-lectIV.1 15	cis1.5-fall2008-parsons-lectIV.1 16
1.5-fall2008-parsons-lectIV.1 15	cis1.5-fall2008-parsons-lectIV.1 16
• Of course, since each element of age is an integer, we can do to	
Modifying elements in an array	cis1.5-fall2008-parsons-lectIV.1 16
 Modifying elements in an array Of course, since each element of age is an integer, we can do to each element, exactly what we can do to an integer. 	cis1.5-fall2008-parsons-lectIV.1 16
 Modifying elements in an array Of course, since each element of age is an integer, we can do to each element, exactly what we can do to an integer. All we have to do is remember how to address each element of 	cis1.5-fall2008-parsons-lectIV.1 16 Functions and array elements • Since elements of age are integers, we can call functions on them
<pre>Modifying elements in an array • Of course, since each element of age is an integer, we can do to each element, exactly what we can do to an integer. • All we have to do is remember how to address each element of the array, using a subscript. • For example: for(counter = 0; counter < 8; counter++) {</pre>	cis1.5-fall2008-parsons-lectIV.1 16 Functions and array elements • Since elements of age are integers, we can call functions on them • If we have the function
 Modifying elements in an array Of course, since each element of age is an integer, we can do to each element, exactly what we can do to an integer. All we have to do is remember how to address each element of the array, using a subscript. For example: 	cis1.5-fall2008-parsons-lectIV.1 16 Functions and array elements • Since elements of age are integers, we can call functions on them • If we have the function <pre>int timesTwo(int number) {</pre>

Summary • This lecture has looked in more detail at arrays. • We cannined the initialization of arrays. • We hooked at handling arrays using for loops, and by playing with subscript values. • We hooked at different things one can do with array elements. • Along the way we also looked at casting. • We finished by sketching one use for arrays in a biomedical context. • We finished by sketching one use for arrays is to search for patterns in them, and C++ gives us the tools to do this. • For example: for [counter = 0; counter < 4; counter++) { [f (dna[counter] = = 't', 'ss [f (dna[counter] + 1] == 't', 'ss [f (dna[counter] + 2] == 'g') [cout << "We found tag";] will search dna for the sequence tag. • To do more complex searches, we need better ways of handling sequences of characters, and we will start to look at those ways in the next lecture.		
 This lecture has looked in more detail at arrays. We examined the initialization of arrays. We looked at handling arrays using for loops, and by playing with subsscript values. We looked at different things one can do with array elements. Along the way we also looked at casting. We finished by sketching one use for arrays in a biomedical context. 	<pre>for patterns in them, and C++ gives us the tools to do this. • For example: for{counter = 0; counter < 4; counter++) { if(dna[counter] == 't' && dna[counter + 1] == 'a' && dna[counter + 2] == 'g') { cout << "We found tag"; } }</pre>	sequences of characters, and we will start to look at those ways
Summary	 This lecture has looked in more detail at arrays. We examined the initialization of arrays. We looked at handling arrays using for loops, and by playing with subscript values. We looked at different things one can do with array elements. Along the way we also looked at casting. We finished by sketching one use for arrays in a biomedical context. 	
	Summary	